收稿日期: 2014-10-30
网络出版日期: 2015-08-21
基金资助
中国科学院先导专项(XDA11010103); 全球变化研究国家重大科学研究计划(“973”)项目(2012CB955603)
Impact of barrier layer on typhoon Haiyan intensification based on HYCOM and remote-sensing data
Received date: 2014-10-30
Online published: 2015-08-21
台风海燕是历史上罕见的超强台风, 本研究利用HYCOM再分析资料和卫星遥感资料数据, 研究了热带西太平洋暖池区障碍层对台风海燕发展的促进作用。台风海燕在热带西北太平洋东部生成后向西移动, 2013年11月3日到11月5日从热带低压发展为超强台风, 此时经过的海域普遍存在深厚的障碍层。由于障碍层内暖水的存在, 热带气旋引起的垂直混合作用和抽吸作用较难使温跃层的冷水进入混合层, 海表面降温效应减弱。高的海表面温度通过潜热释放的方式持续提供能量给热带气旋, 促进其强度提升。此外, 在台风海燕过境时产生了大量降水, 上层海洋层化加强, 混合层变浅, 又使得其路径及周边海域障碍层加厚。
陈俊尧 , 杜岩 , 张玉红 . 基于HYCOM和遥感资料研究障碍层在促进台风海展过程中的作用[J]. 热带海洋学报, 2015 , 34(4) : 23 -30 . DOI: 10.11978/j.issn.1009-5470.2015.04.003
Typhoon Haiyan was a supertyphoon rarely seen in history. Based on HYCOM and remote-sensing data, we investigated the role of barrier layer in the developing phase of typhoon Haiyan evolution. Typhoon Haiyan moved westward over the warm water with a thick barrier layer underneath after it was generated in the eastern part of the Northwest Pacific warm pool. It became a tropical depression on November 3 and developed into a supertyphoon on November 5, 2013. Due to the warm water in barrier layer, the barrier layer reduced vertical mixing and entrainment caused by Typhoon Haiyan, preventing the cold thermocline water from entering the mixed layer. As a result, self-induced sea surface temperature cooling associated with Typhoon Haiyan was suppressed. Further, high sea surface temperature continued to provide heat to Typhoon Haiyan in the form of latent heat flux releasing, which favored quick intensification of typhoon. As Typhoon Haiyan passed by, large amount of precipitation resulted in the shoaling of mixed layer, which favored a new barrier layer to form along its path.
Key words: HYCOM; remote sensing; barrier layer; Typhoon Haiyan
1 杜岩, 王东晓, 施平, 等. 2004. 南海障碍层的季节变化及其与海面通量的关系[J]. 大气科学, 28(1): 101-111.
2 姜良红, 陈大可. 2012. 热带太平洋障碍层厚度的时空特征分析[J]. 海洋学研究, 30(2): 14-20.
3 刘增宏, 许建平, 朱伯康, 等. 2006. 利用 Argo 资料研究 2001-2004 年期间西北太平洋海洋上层对热带气旋的响应[J].热带海洋学报, 25(1): 1-8.
4 潘爱军, 万小芳, 陈航宇, 等. 2009. 台湾海峡中部障碍层日变化及其局地反馈[J]. 中国科学: D辑, (6): 823-832.
5 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2006. GBT 19201-2006,热带气旋等级[S/OL].(2006-05-09)[2015-01-26].http://tcdata.typhoon.gov.cn/doc/TC_std.pdf
6 BALAGURU K, CHANG PING, SARAVANAN R, et al. 2012. Ocean barrier layers’ effect on tropical cyclone intensification [J].ProcNatlAcadSci US, 109(36): 14343-14347.
7 BENTAMY A, FILLON D C. 2012. Gridded surface wind fields from Metop/ASCAT measurements[J]. Int J Remote Sens, 33(6): 1729-1754.
8 BLUNDEN J, ARNDT D S. 2014.State of the Climate in 2013[J].B Am MeteorolSoc, 95(7): S1-S279.
9 CHASSIGNET E P, SMITH L T, HALLIWELL G R, et al. 2003. North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity [J]. J PhysOceanogr, 33(12): 2504-2526.
10 DE BOYER MONTÉGUT C, MADEC G, FISCHER A S, et al. 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile‐based climatology[J]. J Geophys Res: Oceans (1978-2012), 109: C12003.
11 DE BOYER MONTÉGUT C, MIGNOT J, LAZAR A, et al. 2007. Control of salinity on the mixed layer depth in the world ocean: 1. General description [J]. J Geophys Res, 112: C06011.
12 EMANUEL K A. 1999. Thermodynamic control of hurricane intensity [J]. Nature, 401(6754): 665-669.
13 EMANUEL K, DESAUTELS C, HOLLOWAY C, et al. 2004. Environmental control of tropical cyclone intensity [J]. J ATMOS SCI, 61(7): 843-858.
14 JIN X, WELLER R A. 2008.Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables[R]. Woods Hole, Massachusetts: Woods Hole Oceanographic Institution, OAFlux Project Technical Report. OA-2008-01:1- 64.
15 KARA A B, ROCHFORD P A, HURLBURT H E. 2000a. Mixed layer depth variability and barrier layer formation over the North Pacific Ocean[J]. J Geophys Res: Oceans (1978-2012), 105(C7): 16783-16801.
16 KARA A B, ROCHFORD P A, HURLBURT H E. 2000b. An optimal definition for ocean mixed layer depth [J]. J Geophys Res: Oceans (1978-2012), 105(C7): 16803-16821.
17 LIN I-I, WU CHUN-CHIEH, EMANUEL K A, et al. 2005. The interaction of SupertyphoonMaemi (2003) with a warm ocean eddy[J]. Mon Weather Rev, 133(9):2635-2649.
18 LIU YUN, FENG MING, CHURCH J, et al. 2005. Effect of salinity on estimating geostrophic transport of the Indonesian Throughflow along the IX1 XBT section[J]. J Oceanogr, 61(4): 795-801.
19 LUKAS R, LINDSTROM E. 1991. The mixed layer of the western equatorial Pacific Ocean[J]. J Geophys Res: Oceans (1978-2012), 96(S01): 3343-3357.
20 MAES C, ANDO K, DELCROIX T, et al. 2006. Observed correlation of surface salinity, temperature and barrier layer at the eastern edge of the western Pacific warm pool[J]. Geophys Res Lett, 33: L06601.
21 PENG SHIQIU, QIAN YUKUN, LAI ZHIJUAN, et al. 2014. On the mechanisms of the recurvature of super typhoon Megi[J]. Sci Rep, 4: 4451.
22 PRICE J F. 1981.Upper ocean response to a hurricane [J]. J PhysOceanogr, 11(2): 153-175.
23 QU TANGDONG, MEYERS G. 2005. Seasonal variation of barrier layer in the southeastern tropical Indian Ocean [J]. J Geophys Res, 110: C11003.
24 QU TANGDONG, DU YAN, GAN JIANPING, et al. 2007. Mean seasonal cycle of isothermal depth in the South China Sea[J]. J Geophys Res: Oceans (1978-2012), 112: C02020.
25 ROEMMICH D, GILSON J. 2009. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program[J]. Prog in Oceanog, 82: 81-100.
26 SENGUPTA D, GODDALEHUNDI B R, ANITHA D S. 2008. Cyclone‐induced mixing does not cool SST in the post‐monsoon North Bay of Bengal[J]. AtmosSciLett, 9(1): 1-6.
27 SHAY L K, GONI G J, BLACK P G. 2000.Effects of a warm oceanic feature on Hurricane Opal[J]. Mon Weather Rev, 128(5): 1366-1383.
28 SHEN WEIXING, GINIS I. 2003. Effects of surface heat flux‐induced sea surface temperature changes on tropical cyclone intensity[J]. Geophys Res Lett, 30(18): 1993.
29 SPRINTALL J, TOMCZAK M. 1992. Evidence of the barrier layer in the surface layer of the tropics [J]. J Geophys Res: Oceans (1978-2012), 97(C5): 7305-7316.
30 SREENIVAS P, GNANASEELAN C. 2013. Impact of oceanic processes on the life cycle of severe cyclonic storm Jal[J]. IEEE Geoscience and Remote SensSoc, 11(2):519-523.
31 THADATHIL P, MURALEEDHARAN P M, RAO R R, et al. 2007. Observed seasonal variability of barrier layer in the Bay of Bengal[J]. J Geophys Res: Oceans (1978-2012), 112: C02009.
32 VINAYACHANDRAN P N, MURTY V S N, RAMESH BABU V. 2002. Observations of barrier layer formation in the Bay of Bengal during summer monsoon[J]. J Geophys Res: Oceans (1978-2012), 107(C12): 8018.
33 WALLCRAFT A J, METZGER E J, CARROLL S N. 2009. Software design description for the HYbrid Coordinate Ocean Model (HYCOM), version 2.2[R/OL]. (2009-02-12)[2014-10-30]. http://hycom.org/attachments/063_metzger1-2009.pdf.
34 WANG XIDONG, HAN GUIJUN, QI YIQUAN, et al. 2011. Impact of barrier layer on typhoon-induced sea surface cooling[J]. DynamAtmos Oceans, 52(3): 367-385.
35 WEBSTER P J, HOLLAND G J, CURRY J A, et al. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science, 309(5742): 1844-1846.
36 WU CHUN-CHIEN, LEE CHIA-YING, LIN I-I. 2007. The effect of the ocean eddy on tropical cyclone intensity[J]. J AtmosSci, 64(10): 3562-3578.
37 XU XIANGDE, PENG SHIQIU, YANG XIANGJING, et al. 2013. Does warmer China land attract more super typhoons?[J]. Sci Rep, 3:1522-1534
38 YUAN JINNAN, WANG DONGXIAO, WAN QILIN, et al. 2007. A 28-year climatological analysis of size parameters for northwestern Pacific tropical cyclones[J]. AdvAtmosSci, 24: 24-34.
39 ZENG LILI, DU YAN, XIE SHANG-PING, et al. 2009a. Barrier layer in the South China Sea during summer 2000[J].DynamAtmos Oceans, 47(1): 38-54.
40 ZENG LILI, SHI PING, LIU W T, et al. 2009b. Evaluation of a satellite-derived latent heat flux product in the South China Sea: A comparison with moored buoy data and various products[J]. Atmos Res, 94(1): 91-105.
/
〈 | 〉 |