海洋水文学

两层流体中三类内孤立波数值造波方法比较研究

  • 方舟 ,
  • 严圣甫 ,
  • 王旭
展开
  • 1. 上海交通大学, 上海 200240;
    2. 嘉兴南洋职业技术学院, 浙江 嘉兴 314003;
    3. 中国科学院南海海洋研究所, 广东 广州 510301
方舟(1983~), 男, 浙江省嘉兴市人, 工程师, 硕士, 主要从事海洋工程水动力学研究。E-mail: fangzhou@mail.ioa.ac.cn

收稿日期: 2014-07-23

  网络出版日期: 2015-08-21

基金资助

国家自然科学基金项目(40976063); 国际科技合作项目(2010DFA91350)

Comparative study of three wave-generating methods for internal solitary waves in a two-layer fluid

  • FANG Zhou ,
  • YAN Sheng-fu ,
  • WANG Xu
Expand
  • 1. Shanghai Jiao Tong University, Shanghai 200240, China;
    2. School of Jiaxing Nanyang Profession and Technology, Jiaxing 314003, China;
    3. South China Sea Institute of Oceanography, Chinese Academy of Sciences, Guangzhou 510301, China

Received date: 2014-07-23

  Online published: 2015-08-21

摘要

以3类内孤立波理论(Korteweg-de Vries、 extended KdV和 Miyata-Choi-Camassa)的适用性条件为依据, 在有限水深两层流体中分别构建了双推板、速度入口、质量源3类内孤立波数值造波模型。通过系列数值模拟, 对3类方法的数值造波效果和效率进行了比较。计算结果表明, 3类数值造波方法均能生成内孤立波; 数值造波效果方面, 速度入口、质量源两类方法均优于双推板方法; 数值造波效率方面, 速度入口方法效率最高, 质量源方法其次, 而双推板方法效率最低。

本文引用格式

方舟 , 严圣甫 , 王旭 . 两层流体中三类内孤立波数值造波方法比较研究[J]. 热带海洋学报, 2015 , 34(4) : 31 -36 . DOI: 10.11978/j.issn.1009-5470.2015.04.004

Abstract

According to the applicability conditions for three types of internal solitary wave theories including Korteweg-de Vries, extended KdV and Miyata-Choi-Camassa, the double push-pedals wave-generating method, the velocity-inlet wave-generating method and the mass source wave-generating method were developed y in a two-layer fluid of finite depth. Series of numerical simulations were presented to compare the results and efficiency of the three wave-generating methods. Results showed that even though all three methods can generate internal solitary waves, the velocity-inlet method and the mass source method were better than the double push-pedals method in terms of numerical simulations. The efficiency of simulation was the highest for the velocity-inlet method, followed by the mass source method, and the lowest for the double push-pedals method.

参考文献

1 陈钰, 朱良生. 2009. 基于FLUENT的海洋内孤立波数值水槽模拟[J]. 海洋技术, 28(4): 72-75.
2 付东明, 尤云祥, 李巍. 2009. 两层流体中内孤立波与潜体相互作用数值模拟[J]. 海洋工程, 27(3): 38-44.
3 韩鹏. 2008. 基于VOF方法的不规则波阻尼消波研究[D]. 大连: 大连理工大学: 44-69.
4 黄文昊, 尤云祥, 王旭, 等. 2013. 有限深两层流体中内孤立波造波实验及其理论模型[J]. 物理学报, 62(8): 1-14.
5 王旭, 林忠义, 尤云祥. 2014. 两层流体中内孤立波质量源数值造波方法[J]. 上海交通大学学报, 48(6): 75-80.
6 BOLE J B, EBBESMEYER C C, ROMEA R D. 1994. Soliton currents in the South China Sea: measurements and theoretical modeling[C]. The 16th Offshore Technology Conference. Houston: Offshore Technology Conference: 367-376.
7 CHOI W, CAMASSA R. 1999. Fully nonlinear internal waves in a two-fluid system[J]. Fluid Mech, 396: 1-36.
8 DJORDJEVIC V D. 1978. The fission and disintegration of internal solitary waves moving over two-dimensional topography[J]. Phys Oceanogr, 8(6): 1016-1024.
9 OSTROVSKY L A, STEPANYANTS Y A. 1989. Do internal solitons exist in the ocean[J]. Rev Geophys, 27(3): 293-310.
文章导航

/