海洋物理学

稀疏特征在微弱被动鱼声检测中的应用

  • 陈功 ,
  • 王平波 ,
  • 常睿 ,
  • 杜玉华 ,
  • 于海平 ,
  • 李耀波
展开
  • 1. 常州工学院, 江苏常州 213022;
    2. 海军工程大学, 湖北武汉 430033;
    3. 中国人民解放军92956部队, 辽宁大连 116041
陈功(1979~), 男, 江苏省常州市人, 讲师, 博士, 主要从事信号与信息处理的研究。E-mail: realchengong@sina.com

收稿日期: 2014-08-25

  网络出版日期: 2015-08-21

基金资助

国家自然科学基金(51109218); 江苏省自然科学基金(BK20130245); 江苏省产学研联合创新资金研究项目(BY2014040); 常州工学院自然科学基金(YN1311)

Research on detection of weak passive fish acoustic by sparse decomposition feature

  • CHEN Gong ,
  • WANG Ping-bo ,
  • CHANG Rui ,
  • DU Yu-hua ,
  • YU Hai-ping ,
  • LI Yao-bo
Expand
  • 1. Changzhou Institute of Technology, Changzhou 213022, China;
    2. Naval University of Engineering, Wuhan 430033, China;
    3. Unit No. 92956 of the Chinese Peoples Liberation Army, Dalian 116041, China

Received date: 2014-08-25

  Online published: 2015-08-21

摘要

为了在海洋环境中检测有效被动鱼声信号段, 实现鱼声信号的识别, 采用稀疏分解算法提取相干比特征值实现鱼声端点检测技术。该算法在训练阶段提取不同信噪比条件下干净的被动鱼声、海浪噪声的特征值作为测试声目标特征, 在检测阶段提取移动含噪信号段与测试特征做欧式距离识别分类, 将识别对象分成两类, 最后采用门限判决方法实现端点的检测。实验结果表明, 相比较于功率谱特征提取算法, 该算法在小信噪比条件下可以准确实现有效信号段的检测。

本文引用格式

陈功 , 王平波 , 常睿 , 杜玉华 , 于海平 , 李耀波 . 稀疏特征在微弱被动鱼声检测中的应用[J]. 热带海洋学报, 2015 , 34(4) : 48 -53 . DOI: 10.11978/j.issn.1009-5470.2015.04.006

Abstract

To detect and recognize passive fish acoustic signals from noisy marine environment, sparse decomposition is used to realize the endpoint detection by coherent ratio feature. This algorithm extracts feature of fish and wave acoustic as test object under different signal-to-noise (SNR) ratios in the training; feature from noisy signal segment is extracted in the testing to classify test object; finally, it is realized by threshold endpoint detection method. Experimental results show that the algorithm in low SNR can accurately realize effective signal segments, compared with the power spectrum feature extraction algorithm.

参考文献

1 陈功, 朱锡芳, 许清泉. 2013. 仿声技术在海洋鱼类被动声信号特征提取中的应用[J]. 海洋技术, 32(3): 50-54.
2 韩立华, 王博, 段淑凤. 2010. 语音端点检测技术研究进展[J].计算机应用研究, 7(4): 1220-1226.
3 任新敏, 高大治, 姚玉玲. 2007. 大黄鱼的发声及信号特性研究[J].大连水产学院学报, 22(2): 123-128.
4 王建英, 尹忠科. 2006. 信号与图像的稀疏分解及初步应用[M]. 成都: 西南交通大学出版社: 1-191.
5 张波. 2009.鱼群声散射模型及其仿真研究[D].哈尔滨:哈尔滨工程大学: 1-72.
6 ABILEAH R, LEWIS D. 1996. Monitoring high-seas fisheries with long-range passive acoustic sensors[C]. Port Lauderdale, FL: OCEANS '96. MTS/IEEE. Prospects for the 21st Century. Conference Proceedings. IEEE, 1: 1917-1924.
7 HAWKINS A D, RASMUSSEN K J. 1978. The calls of gadoid fish[J]. Journal of the Marine Biological Association of the United Kingdom, 58: 891-911.
8 HAWKINS A D, 1986. Underwater sound and fish behaviour[M]// PITCHER T J. The behaviour of teleost fshes. London & Sydney: CROOM HELM: 114-151.
9 HOWELL B P, WOOD S. 2003. Passive sonar recognition and analysis using hybrid neural networks[J]. Oceans, 4: 1917- 1924.
10 LOBEL P S, MANN D A. 1995. Spawning sounds of the damselfish, Dascyllusalbisella (Pomacentridae), and relationship to male size[J]. Bioacoustics, 6(3): 187-198.
11 ROUNTREE R A, GOUDEY C, HAWKINS T, et al. 2002. Listening to Fish[C/OL]. Proceedings of the International Workshopon the Applications of Passive Acoustics to Fisheries. [2014-
12 08-25]. April 8~10. Dedham, MA: MIT Sea Grant Technical Report MITSG 03-2. http://web.mit.edu/seagrant/aqua/cfer/ acoustics/PAprocBrFINAL.pdf
13 ROUNTREE R A, GILMORE R G, GOUDEY C A, et al. 2006. Listening to fish: Applications of passive acoustics to fisheries science[J]. Fisheries, 31(9): 433-446.
14 ROUNTREE R. 2008. Passive acoustics as a tool in fisheries science[J]. Transactions of the American Fisheries Society, 137: 533-541.
15 STOLKIN R, RADHAKRISHNAN S, SUTIN A. 2007. Passive acoustic detection of modulated underwater sounds from biological and anthropogenic sources[C]. Vancouver, BC. OCEANS 2007. IEEE: 1-8.
16 WOOD M, CASARETTO L, HORGAN G, et al. 2002. Discriminating between fish sounds - a wavelet approach[J]. Bioacoustics, 12: 337-339.

文章导航

/