海洋生物学

南海南部浮游动物稳定同位素研究—— 碳稳定同位素*

  • 刘华雪 ,
  • 徐军 ,
  • 李纯厚 ,
  • 陈作志 ,
  • 黄洪辉
展开
  • 1. 广东省渔业生态环境重点实验室, 农业部南海渔业资源开发利用重点实验室, 中国水产科学研究院南海水产研究所,广东广州 510300;
    2. 中国科学院水生生物研究所, 湖北武汉430072
刘华雪(1984~), 男, 山东省济宁市人, 博士, 从事海洋生态学研究。E-mail: liuhuaxue@scsfri.ac.cn

收稿日期: 2014-09-15

  网络出版日期: 2015-08-21

基金资助

公益性行业(农业)科研专项(201403008); 农业部财政重大专项(NFZX2013); 广东省自然科学基金(S2013040016424); 中央级公益性科研院所基本业务费(2013TS07); *感谢“南锋”科考船工作人员在调查取样过程中的协助, 陈绵润博士对数据分析的帮助, 谨致谢忱!

Stable carbon isotope of zooplankton in the southern South China Sea

  • LIU Hua-xue ,
  • XU Jun ,
  • LI Chun-hou ,
  • CHEN Zuo-zhi ,
  • HUANG Hong-hui
Expand
  • 1. Guangdong Provincial Key Laboratory of Fishery Ecology and Environment; Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Guangzhou 510300, China ;
    2. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

Received date: 2014-09-15

  Online published: 2015-08-21

摘要

文章分析了南海南部海域(108°~117°E; 4°~12°N)春季和夏季不同粒径范围浮游动物碳稳定同位素特征。根据粒级将浮游动物分成三组, 分别是> 500μm组(大型)、380~500μm组(中型)和180~380μm组(小型)。研究结果显示浮游动物δ13C值存在着显著的季度变化。夏季大型浮游动物δ13C平均值比春季高, 而春季中型和小型浮游动物δ13C平均值比夏季高。单因素方差分析显示, 各粒级浮游动物稳定同位素δ13C值并无显著性差异。广义加性模型分析结果表明大型和小型浮游动物δ13C值与对应粒径的浮游动物生物量没有明显的关系, 与75m层盐度呈负相关关系(p<0.05); 中型浮游动物与环境因素及生物量的关系不明显, 显示水体垂直混合的季节变化对大型和小型浮游动物δ13C值有一定的影响。

本文引用格式

刘华雪 , 徐军 , 李纯厚 , 陈作志 , 黄洪辉 . 南海南部浮游动物稳定同位素研究—— 碳稳定同位素*[J]. 热带海洋学报, 2015 , 34(4) : 59 -64 . DOI: 10.11978/j.issn.1009-5470.2015.04.008

Abstract

The stable carbon isotopes of zooplankton based on size fractionation in the southern South China Sea during spring and summer 2013 were investigated. The zooplankton was divided into three groups according to size (> 500 μm, 380~500 μm and 180~380 μm). The mean δ13C value of macrozooplankton in summer was higher than that in spring, while meso- and micro-zooplankton showed opposite character. One-way ANOVA result showed no significance between size fractionated zooplankton groups. GAM analysis showed that both macro- and micro-zooplankton showed close relationship to seawater salinity at 75-m depth, while meso-zooplankton was not closely related to environment variables, indicating that vertical mixing also influenced stable carbon isotopes.

参考文献

1 蔡德陵, 王荣, 毕洪生, 2001. 渤海生态系统的营养关系: 碳同位素研究的初步结果[J]. 生态学报, 21(8): 1354-1359.
2 蔡德陵, 李红燕, 唐启升, 等. 2005. 黄东海生态系统食物网连续营养谱的建立: 来自碳氮稳定同位素方法的结果[J]. 中国科学, 35 (2): 123-130.
3 陈绍勇, 周伟华, 吴云华, 等. 2001. 南沙珊瑚礁生态系生物体中 δ 13 C的分布[J]. 海洋科学, 25 (6): 4-7.
4 崔莹. 2012. 基于稳定同位素和脂肪酸组成的中国近海生态系统物质流动研究[D]. 上海: 华东师范大学: 6-10.
5 郭卫东, 杨逸萍, 吴林兴, 等.2002.南沙渚碧礁生态系营养关系的稳定碳同位素研究[J]. 台湾海峡, 21(1): 94-101.
6 金鑫, 李超伦, 刘梦坛.2012. 基于脂肪酸标记法和碳氮稳定同位素比值法的东海水母常见种的食性分析[J]. 海洋与湖沼, 43(3): 486-493.
7 柯志新, 黄良民, 徐军, 等. 2012. 大亚湾冬季不同粒级浮游生物的氮稳定同位素特征及其与生物量的关系[J]. 生态学报, 32(22): 7102-7108.
8 刘华雪, 徐军, 李纯厚, 等. 2015. 南海南部浮游动物稳定同位素研究—氮稳定同位素[J]. 热带海洋学报, 34(2): 32-38.
9 万炜, 胡建英, 安立会, 等. 2005. 利用稳定氮和碳同位素分析渤海湾食物网主要生物种的营养层次[J]. 科学通报, 50(7): 708-712.
10 BĂNARU D, CARLOTTI F, BARANI A, et al. 2013. Seasonal variation of stable isotope ratios of size-fractionated zooplankton in the Bay of Marseilles (NW Mediterranean Sea) [J]. Journal of Plankton Research, 36(1): 145-156.
11 CHEN M R, LIU H B, CHEN B Z. 2012. Effects of dietary essential fatty acids on reproduction rates of a subtropical calanoid copepod, Acartiaerythraea [J]. Marine Ecology Progress Series, 455: 95-110.
12 ESPINASSE B, VIVIEN M H, TIANO M, et al. 2014. Patterns of variations in C and N stable isotope ratios in size-fractionated zooplankton in the Gulf of Lion, NW Mediterranean Sea [J]. Journal of Plankton Research, 36(5): 1204-1215.
13 FANELLI E, CARTES J E, PAPIOL V, 2011. Food web structure of deep-sea macrozooplankton and micronekton off the Catalan slope: Insight from stable isotopes [J]. Journal of Marine Systems, 87: 79-89.
14 FRY B, QUIONES R B, 1994. Biomass spectra and stable isotope indicators of trophic level in zooplankton of the northwest Atlantic [J]. Marine Ecology Progress Series, 112: 201-204.
15 HANNIDES C C S, POPP B N, CHOY C A, et al. 2013. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: A stable isotope perspective [J]. Limnol Oceanogr, 58(6): 1931-1946.
16 KOPPELMANN R, SCHNACK R B, MOBIUS J, et al. 2009.Trophic relationships of zooplankton in the eastern Mediterranean based on stable isotope measurements [J]. Journal of Plankton Research, 31: 669-686.
17 LAAKMANN S, AUEL H, 2010. Longitudinal and vertical trends in stable isotope signatures ( δ 13 C and δ 15 N) of omnivorous and carnivorous copepods across the South Atlantic Ocean [J]. Marine Biology, 157: 463-471.
18 LEGENDRE L, RIVKIN R B. 2008. Planktonic food webs: Microbial hub approach [J]. Marine Ecology Progress Series, 365: 289-309.
19 RAU G H, TEYSSIE J L, RASSOULZADEGAN F, et al. 1990. 13 C/ 12 C and 15 N/ 14 N variations among size-fractionated marine particles: Implications for their origin and trophic relationships [J]. Marine Ecology Progress Series, 59: 33-38.
20 ROLFF C, 2000. Seasonal variation in C and N of size-fractionated plankton at a coastal station in the northern Baltic proper [J]. Marine Ecology Progress Series, 203: 47-65.
21 SHOLTO-DOUGLAS A D, FIELD J G, JAMES A G, et al. 1991. 13 C/ 12 C and 15 N/ 14 N isotope ratios in the Southern Benguela Ecosystem: indicators of food web relationships among different size-classes of plankton and pelagic fish differences between fish muscle and bone collagen tissues [J]. Marine Ecology Progress Series, 78: 23-31.
22 ZANDEN J M V, RASMUSSEN B J. 1999. Primary consumer δ 13 C and δ 15 N and the trophic position of aquatic consumer[J]. Ecology, 80(4): 1395-1404.

文章导航

/