传统的海岸侵蚀和沉积信息的获取多以实地测量为主, 且多用一维或二维指标来表示, 缺少海岸形态变化的三维立体表达。利用中国海监南海航空支队获取的两个时期高密度机载激光雷达点云数据, 构建了蜈支洲岛高精度的5m分辨率数字高程模型; 在此基础上结合同步获取的航空影像生成了蜈支洲岛0.45m分辨率的数字正射影像, 并对两期数字正射影像进行监督分类和叠置分析, 提取出发生海岸侵蚀与沉积的区域; 这些侵蚀与沉积区域基本上交替出现在砂质海岸附近。结合蜈支洲岛两期数字高程模型, 提取了12个海岸侵蚀与沉积对象多边形的典型几何属性、形状属性、表面属性和体积属性, 如面积、周长、紧凑系数、平均坡度差、平均坡向差、平均曲率差、总体积变化等。分析结果实现了海岸形变的立体多角度表达, 为海岸带资源的管理和控制规划提供新的研究方法。
张晓浩
,
黄华梅
,
吴秋生
,
娄全胜
,
杨帆
,
刘辉
. 三亚市蜈支洲岛海岸侵蚀与沉积的定量分析[J]. 热带海洋学报, 2015
, 34(5)
: 51
-56
.
DOI: 10.11978/2014125
Traditionally, information on coastal erosion and deposition is acquired by field surveying, using one-dimensional (1D) or 2D indices, not 3D expression of coastal morphology change. This article shows 5-m resolution high-precision DEMs (digital elevation models ) on Wuzhizhou Island using two periods of airborne Lidar point cloud data acquired by the South China Sea Airborne Detachment of China Marine Surveillance. In combination with synchronously acquired aerial images, 0.45m resolution DOMs (digital orthophoto maps) are created for this area based on the above DEM models. We also execute supervised classification and overlay analysis using DOMs to extract information on coastal erosion and deposition. These erosion and deposition patches appear alternately near the sandy coast. Combining DEMs and coastal erosion/deposition object polygons, we extract geometry, shape, surface, and volume attributes of these 12 polygons, such as area, perimeter, compact index, average slope difference, average aspect difference, average curvature difference, total volume change, etc. The analysis results provide 3D multi-view expression of coastal morphology change, aiming to offer a new research method for coastal resources management and planning.
1 刘文. 2008. 基于数学形态学原理和TerraScan的Lidar点云数据分类方法研究[D]. 青岛: 国家海洋局第一海洋研究所: 15-17.
2 魏蔚. 2010. 针对LiDAR点云的地面点与非地面点的分离[J]. 西安工程大学学报, 24(3): 310-314.
3 张晓浩, 娄全胜, 张春雨. 2010. 基于机载激光雷达的海岸带三维景观仿真模拟[J]. 热带海洋学报, 29(5): 44-48.
4 张熠斌. 2010. 机载LiDAR点云数据处理理论及技术研究[D]. 西安: 长安大学: 6-7.
5 赵旦. 2009. 基于MicroStation的机载激光雷达数据处理实验研究[D]. 西安: 长安大学: 39-41.
6 FINKL C W, BENEDET L, ANDREWS J L. 2005. Interpretation of seabed geomorphology based on spatial analysis of high- density airborne laser bathymetry[J]. Journal of Coastal Research, 21(3): 501-514.
7 GOODCHILD M F, YUAN M, COVA T J. 2007. Towards a general theory of geographic representation in GIS[J]. International Journal of Geographical Information Science, 21(3): 239-260.
8 PEUQUET D J. 1994. It’s about time - A conceptual framework for the representation of temporal dynamics in geographic information systems[J]. Annals of the Association of American Geographers, 84(3): 441-461.
9 SMITH B, MARK D M. 2003. Do mountains exist? Towards an ontology of landforms[J]. Environment and Planning B—Planning & Design, 30(3): 411-427.
10 WHITE S A, WANG Y. 2003. Utilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastline[J]. Remote Sensing of Environment, 85(1): 39-47.
11 ZHANG K, WHITMAN D, LEATHERMAN S, et al. 2005. Quantification of beach changes caused by Hurricane Floyd along Florida's Atlantic coast using airborne laser surveys[J]. Journal of Coastal Research, 21(1): 123-134.