海洋地质学

西太平洋科学大洋钻探的地球动力学成果*

  • 宋晓晓 ,
  • 李春峰
展开
  • 1. 同济大学海洋地质国家重点实验室, 上海 200092;
    2. 浙江大学海洋学院海洋地质与资源研究所, 浙江 舟山, 316021
宋晓晓(1991—), 女, 硕士研究生, 从事海洋地球物理研究。

收稿日期: 2014-10-19

  网络出版日期: 2016-02-02

基金资助

教育部博士点基金项目(20100072110036); 国家自然科学基金重点项目(91028007、91428309); *致谢: 感谢参加IODP349航次的科学家对本文的支持

Geodynamic results of scientific ocean drilling in the western Pacific

  • SONG Xiaoxiao ,
  • LI Chunfeng
Expand
  • 1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China;
    2. Institute of Marine Geology and Resources, Ocean College, Zhejiang University, Zhoushan 316021, China

Received date: 2014-10-19

  Online published: 2016-02-02

Supported by

Doctoral Scientific Fund Project of the Ministry of Education (20100072110036); Key Project of Natural Science Foundation of China (91028007, 91428309)

摘要

西太平洋聚集了地球上大量的边缘海盆和俯冲带, 在全球地球动力学研究中占有举足轻重的地位, 一直以来都是大洋钻探的重点区域。文章通过归纳过去40年来科学大洋钻探在西太平洋的地球动力学成果, 分析当前大洋钻探的现状, 进而探讨仍然存在的问题及未来钻探的区域。钻探成果揭示了边缘海盆的演化过程, 包括日本海盆的弧后海底扩张成因, 菲律宾海的弧后扩张和残留弧的形成模式及南海构造演化过程。深海沉积物的研究及玄武岩的地球化学分析为海盆的扩张成因提供依据, 同时为了解海盆扩张过程中的地幔演化过程提供重要信息。大洋钻探成果表明, 俯冲倾角大小不仅影响俯冲工厂的动力学机制, 而且对俯冲板块耦合性具有控制作用。目前日本南海海槽发震带钻探项目的最大钻探深度为3056米, 未来几年有望获得发震带的岩石样本。对于西太平洋的两个重要构造单元- Shatsky海隆和翁通—爪哇海台的成因机制问题, 大洋钻探获取的依据仍不能单一地支持某一个假说。在南斐济海盆及赫布里斯海盆发现的大洋红层的形成主要受控于海盆的海底扩张事件。苏拉威西海和南海发现的大洋红层直接发育在大洋玄武岩之上, 可能为海盆的扩张起标定作用。虽然过去进行了大量的钻探工作, 但因西太平洋边缘海盆具有很大的构造多样性和复杂性, 仍然有很多科学问题有待进一步开展研究。

本文引用格式

宋晓晓 , 李春峰 . 西太平洋科学大洋钻探的地球动力学成果*[J]. 热带海洋学报, 2016 , 35(1) : 17 -30 . DOI: 10.11978/2014121

Abstract

With extensive development of marginal basins and subduction zones, the western Pacific is a key area in scientific ocean drilling. This paper intends to show the current status of scientific ocean drilling and discuss potential future breakthroughs, through summarizing scientific ocean drilling results in geodynamics over the past 40 years in the western Pacific. Drilling results documented the evolution of the marginal basins, including the Japan Sea, the Philippine Sea and the South China Sea. Deep sea sediments and geochemical analysis of basalts provided important information for evolution of basins and mantle processes. Ocean drilling results verified that the dip of a subducting slab not only has an effect on dynamic mechanism of the subduction factory but also controls plate coupling at the subduction zone. A record depth of 3056 mbsf had been drilled into the forearc of Nankai Trough subduction zone and retrieval of rock samples from the seismogenic zone is expected in the next few years. Ocean drilling results support more than one hypothesis of formation of the oceanic plateaus in the western Pacific, including the Shatsky Rise and the Ontong Java Plateau. Pelagic brown claystone occurred in the southwestern Pacific marginal basin, and it’s formation was controlled by seafloor spreading. In both the South China Sea and the Celebes Sea, pelagic brown claystone lie directly above the basement basalt units. Because of the structural complexity and diversity of the western Pacific, many scientific problems still need to be resolved despite a large number of ocean drilling expeditions.

参考文献

1 林峰, 陈敏, 杨伟锋, 等, 2013.2009年春季东海的生物固氮速率[J]. 应用海洋学学报, 32(4): 445-454. LIN F, CHEN M, YANG W F, et al, 2013. Biological N 2 fixation rates in the East China Sea in spring 2009[J]. Journal of Applied Oceanography, 32(4): 445-454.
2 王雨, 林茂, 杨清良, 等, 2012. 台湾岛以东海域束毛藻种群的组成与分布[J]. 海洋通报, 31(4): 426-432. WANG Y, LIN M, YANG Q L, et al, 2012. Composition and distribution of the Trichodesmium population in the sea area east to Taiwan[J]. Marine Science Bulletin. 31(4): 426-432.
3 杨清良, 1998. 南黄海和东海陆架区束毛藻( Trichodesmium )的分布特征[J]. 海洋学报, 20(5): 93-100. YANG Q L, 1998. Characteristics of Trichodesmium distribution in waters over cotinental shelves of the South Huanghai Sea and the East China Sea[J]. Acta Oceanologica Sinica. 20(5): 93-100.
4 CAPONE D G, ZEHR J P, PAERL H W, et al, 1997. Trichodesmium, a globally significant marine cyanobacterium[J]. Science, 276(5316): 1221-1229.
5 CAPONE D G, BUMS J A, MONTOYA J P, et al, 2005. Nitrogen fixation by Trichodesmium spp.: An important source of new nitrogen to the tropical and subtropical North Atlantic Ocean[J]. Global Biogeochem Cy, 19(2): GB2024. doi:10.1029/2004GB002331.
6 CARPENTER E J, ONEIL J M, DAWSON R, et al, 1993. The tropical diazotrophic phytoplankter Trichodesmium : Biological characteristics of two common species[J]. Mar Ecol- Prog Ser, 95(3): 295-304.
7 CHEN Y L , CHEN H Y, TUO S H, et al, 2008. Seasonal dynamics of new production from Trichodesmium N 2 fixation and nitrate uptake in the upstream Kuroshio and South China Sea basin[J]. Limnol Oceanogr, 53(5): 1705-1721.
8 COLES V J, HOOD R R, PASCUAL M, et al, 2004. Modeling the impact of Trichodesmium and nitrogen fixation in the Atlantic Ocean[J]. J Geophys Res, 109(C6): 1-17. doi:10.1029/2002 JC001754.
9 COLES V J, HOOD R R, 2007. Modeling the impact of iron and phosphorus limitations on nitrogen fixation in the Atlantic Ocean[J]. Biogeosciences, 4(4): 455-479.
10 DUGDALE R C, GOERING J J, 1967. Uptake of new and regenerated forms of nitrogen in primary productivity[J]. Limnol Oceanogr, 12: 196-206.
11 EPPLEY R W, 1972. Temperature and phytoplankton growth in sea[J]. Fish B-NOAA, 70(4): 1063-1085.
12 FALKOWSKI P G, 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO 2 in the ocean[J]. Nature, 387(6630): 272-275.
13 FASHAM M J R, DUCKLOW H W, MCKELVIE S M, 1990. A nitrogen-based model of plankton dynamics in the oceanic mixed layer[J]. J Mar Res, 48(3): 591-639.
14 FENNEL K, SPITZ Y H, LETELIER R M, et al, 2002. A deterministic model for N 2 fixation at stn. ALOHA in the subtropical North Pacific Ocean[J]. Deep-Sea Res Pt Ⅱ, 49(1-3): 149-174.
15 FERNANDEZ C, FARIAS L, ULLOA O, 2011. Nitrogen fixation in denitrified marine waters[J]. Plos One, 6(6): e20539. doi:10.1371/journal.pone.0020539
16 GRUBER N, FRENZEL H, DONEY S C, et al, 2006. Eddy- resolving simulation of plankton ecosystem dynamics in the California Current System[J]. Deep-Sea Res, Pt Ⅰ, 53: 1483-1516.
17 HOOD R R, BATES N R, CAPONE D G, et al, 2001. Modeling the effect of nitrogen fixation on carbon and nitrogen fluxes at BATS[J]. Deep-Sea Res Pt Ⅱ, 48(8-9): 1609-1648.
18 HOOD R R, COLES V J, CAPONE D G, 2004. Modeling the distribution of Trichodesmium and nitrogen fixation in the Atlantic Ocean[J]. J Geophys Res, 109: C06006. doi:10.1029/ 2002JC001753
19 KARL D M, LETELIER R, HEBEL D V, et al, 1992. Trichodesmium blooms and new nitrogen in the north Pacific gyre[M] // CARPENTER E J, CAPONE D G, RUETER J G. Marine pelagic cyanobacteria: Trichodesmium and other diazotrophs. Dordrecht: Kluwer Academic Publishers: 219-237.
20 KARL D, LETELIER R, TUPAS L, et al, 1997. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean[J]. Nature, 388(6642): 533-538.
21 KNAPP A N, 2012. The sensitivity of marine N 2 fixation to dissolved inorganic nitrogen[J]. Front Microbiol, 3: 374. doi:10.3389/fmicb.2012.00374
22 LI Q P, FRANKS P J S, LANDRY M R, et al, 2010. Modeling phytoplankton growth rates and chlorophyll to carbon ratios in California coastal and pelagic ecosystems[J]. J Geophys Res, 115: G04003. doi:10.1029/2009jg001111.
23 LIU K K, CHAO S Y, SHAW P T, et al, 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study[J]. Deep-Sea Res, Pt Ⅰ, 49(8): 1387-1412.
24 MOUTIN T, KARL D M, DUHAMEL S, et al, 2008. Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean[J]. Biogeosciences, 5(1): 95-109.
25 NAKAMURA T, MATSUMOTO K, UEMATSU M, 2005. Chemical characteristics of aerosols transported from Asia to the East China Sea: an evaluation of anthropogenic combined nitrogen deposition in autumn[J]. Atmos Environ, 39(9): 1749-1758.
26 NEEDOBA J A, FOSTER R A, SAKAMOTO C, et al, 2007. Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean[J]. Limnol Oceanogr, 52(4): 1317-1327.
27 REDFIELD A C, KETCHUM B H, RICHARDS F A, 1963. The influence of organisms on the composition of sea water[J]. The Sea, 2: 26-77.
28 TROUPIN C, SANGRA P, ARISTEGUI J, 2010. Seasonal variability of the oceanic upper layer and its modulation of biological cycles in the Canary Island region[J]. J Marine Syst, 80(3): 172-183.
29 VITOUSEK P M, HOWARTH R W, 1991. Nitrogen limitation on land and in the sea-How can it occur[J]. Biogeochemistry, 13(2): 87-115.
30 WU J F, SUNDA W, BOYLE E A, 2000. Phosphate depletion in the western North Atlantic Ocean[J]. Science, 289(5480): 759-762.
31 ZEHR J P, KUDELA R M, 2011. Nitrogen cycle of the open ocean: From genes to ecosystems[J]. Annu Rev Mar Sci, 3: 197-225.
文章导航

/