海洋地球物理学

海洋岩石圈磁结构及动力学

  • 刘青松 ,
  • 刘建兴 ,
  • 段宗奇
展开
  • 1. 中国科学院地质与地球物理研究所特提斯研究中心, 北京 100029;
    2. 中国科学院大学, 北京 100049
刘青松(1972—), 男, 河北省涿州市人, 研究员。Email: qsliu@mail.iggcas.ac.cn; 电话: 010-82998365

收稿日期: 2015-02-17

  网络出版日期: 2016-02-02

基金资助

海岸带地质调查工程-大陆架科学钻探项目(GZH201100202); 国家海洋局“全球变化与海气相互作用”专项(GASI-GEOGE-03); 国家自然科学基金(41430962、41374073)

Magnetic structure of the oceanic lithosphere and its dynamic implications

  • LIU Qingsong ,
  • LIU Jianxing ,
  • DUAN Zongqi
Expand
  • 1. The Tethys Research Center, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-02-17

  Online published: 2016-02-02

Supported by

Chinese Continental Shelf Deep Drilling Program (GZH201100202); National Program on Global Change and Air-Sea Interaction (GASI-GEOGE-03); National Natural Science Foundation of China (41430962, 41374073)

摘要

古地磁学在20世纪极大地促进了板块构造理论的诞生和全球大洋钻探计划的发展。对洋壳的磁性研究是这场地学革命的突破点之一。从磁学性质上, 洋壳磁性包括洋壳中所含磁性矿物本身的性质以及这些矿物携带的古地磁信息。从介质性质上, 洋壳包含下部岩石层(包括枕状玄武岩、辉长岩和橄榄岩)和上部沉积物。文章首先总结洋壳的磁性结构, 并对其代表的动力学意义进行深入探讨, 主要包括应用磁异常条带进行年代学、地球深部动力学、大洋洋壳的板块运动学以及热点演化等研究, 详细总结了国内相关研究中南海洋壳的磁性研究进展。最后对研究中遇到的相关难点和关键科学问题进行了回顾与展望。

本文引用格式

刘青松 , 刘建兴 , 段宗奇 . 海洋岩石圈磁结构及动力学[J]. 热带海洋学报, 2016 , 35(1) : 38 -47 . DOI: 10.11978/2015026

Abstract

In the last century, paleomagnetism, especially studies on magnetic properties of oceanic crusts, have greatly promoted the development of the plate tectonics theory and the International Ocean Drilling Program. The oceanic crust carries two kinds of magnetic information: magnetic properties of the magnetic assemblage in the oceanic crust, and the paleomagnetic signals carried by these minerals. Generally, the oceanic crust consists of a lower oceanic lithosphere (including pillow basalt, gabbro and peridotite) and overlying marine sediments. This paper summarized the magnetic structure of the oceanic crust, and then discussed relevant dynamic processes including chronological indications of oceanic magnetic anomalies, dynamic processes of the Earth’s interior, kinematics of the oceanic crust, and evolution of hotspots. Then, we systematically summarized major progresses of magnetic studies of the South China Sea. Key scientific topics related to magnetic properties of oceanic crusts in future studies were also discussed.

参考文献

1 李付成, 孙珍, 张云帆, 等, 2012. 海山的倾斜俯冲对上覆板块变形的影响[J]. 地球物理学进展, 27: 1406-1415. LI F C, SUN Z, ZHANG Y F, et al, 2012. Influence of oblique seamount subduction on the deformation of upper plate[J]. Progress in Geophys, 27(4): 1406-1415.
2 李家彪, 金翔龙, 阮爱国, 等, 2004. 马尼拉海沟增生楔中段的挤入构造[J]. 科学通报, 49(10): 1000-1008. LI J B, JIN X L, RUAN A G, et al, 2004. Diapiric structure of accretionary middle piece in Manila trench[J]. Chinese Science Bulletin, 49(10): 1000-1008.
3 朱守彪, 邢会林, 谢富仁, 等, 2008. 地震发生过程的有限单元法模拟——以苏门答腊俯冲带上的大地震为例[J]. 地球物理学报, 51: 460-468. ZHU S B, XING H L, XIE F R, et al, 2008. Simulation of earthquake processes by finite element method: The case of megathrust earthquakes on the Sumatra subduction zone[J]. Chinese Journal of Geophysics, 2008, 51(2): 460-468.
4 ABERCROMBIE R E, ANTOLIK M, FELZER K, et al, 2001. The 1994 Java tsunami earthquake: Slip over a subducting seamount[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 106: 6595-6607.
5 BABA T, HORI T, HIRANO S, et al, 2001. Deformation of a seamount subducting beneath an accretionary prism: Constraints from numerical simulation[J]. Geophysical Research Letters, 28: 1827-1830.
6 BANGS N L B, GULICK S P S, SHIPLEY T H, 2006. Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone [J]. Geology, 34: 701.
7 BILEK S L, 2007. Influence of subducting topography on earthquake rupture[J]. The Seismogenic Zone of Subduction Thrust Faults: 123-146.
8 CLOOS M, 1992. Thrust-type subduction-zone earthquakes and seamount asperities: A physical model for seismic rupture[J]. Geology, 20: 601.
9 COULBOURN W T, HILL P J, BERGERSEN D D, 1989. Machias Seamount, Western Samoa: Sediment remobilization, tectonic dismemberment and subduction of a guyot[J]. Geo-marine letters, 9: 119-125.
10 DOMINGUEZ S, LALLEMAND S, MALAVIEILLE J, et al, 1998. Upper plate deformation associated with seamount subduction[J]. Tectonophysics, 293: 207-224.
11 DOMINGUEZ S, MALAVIEILLE J, LALLEMAND S, 2000. Deformation of accretionary wedges in response to seamount subduction: Insights from sandbox experiments[J]. Tectonics, 19: 182-196.
12 FRYER P, AMBOS E L, HUSSONG D M, 1985. Origin and emplacement of Mariana forearc seamounts[J]. Geology, 13: 774.
13 GAO X, WANG K, 2014. Strength of stick-slip and creeping subduction megathrusts from heat flow observations[J]. Science, 345: 1038-1041.
14 IGARASHI T, MATSUZAWA T, HASEGAWA A, 2003. Repeating earthquakes and interplate aseismic slip in the northeastern Japan subduction zone[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 108.
15 KELLEHER J, MCCANN W, 1976. Buoyant zones, great earthquakes, and unstable boundaries of subduction[J]. Journal of Geophysical Research, 81: 4885-4896.
16 KODAIRA S, 2000. Subducted Seamount Imaged in the Rupture Zone of the 1946 Nankaido Earthquake[J]. Science, 289: 104-106.
17 LALLEMAND S E, SCHN RLE P, MALAVIEILLE J, 1994. Coulomb theory applied to accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/or frontal accretion[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 99: 12033-12055.
18 LI F, SUN Z, HU D, et al, 2013. Crustal structure and deformation associated with seamount subduction at the north Manila Trench represented by analog and gravity modeling[J]. Marine Geophysical Research, 34: 393-406.
19 MATSUZAWA T, IGARASHI T, HASEGAWA A, 2002. Characteristic small‐earthquake sequence off Sanriku, northeastern Honshu, Japan[J]. Geophysical Research Letters, 29: 38-1-38-4.
20 NISHIZAWA A, KANEDA K, WATANABE N, et al, 2009. Seismic structure of the subducting seamounts on the trench axis: Erimo Seamount and Daiichi-Kashima Seamount, northern and southern ends of the Japan Trench[J]. Earth Planets Space, 61: e5-e8.
21 ORD A, 1991. Deformation of rock: a pressure-sensitive, dilatant material[J]. Pure and Applied Geophysics, 137: 337-366.
22 PARK J O, TSURU T, KANEDA Y, et al, 1999. A subducting seamount beneath the Nankai accretionary prism off Shikoku, southwestern Japan[J]. Geophysical Research Letters, 26: 931-934.
23 PEDLEY K L, BARNES P M, PETTINGA J R, et al, 2010. Seafloor structural geomorphic evolution of the accretionary frontal wedge in response to seamount subduction, Poverty Indentation, New Zealand[J]. Marine Geology, 270: 119-138.
24 POLYANSKY O, KOROBEYNIKOV S, BABICHEV A, et al, 2014. Numerical modeling of mantle diapirism as a cause of intracontinental rifting[J]. Izvestiya, Physics of the Solid Earth, 50: 839-852.
25 SINGH S C, HANANTO N, MUKTI M, et al, 2011. Aseismic zone and earthquake segmentation associated with a deep subducted seamount in Sumatra[J]. Nature Geoscience, 4: 308-311.
26 SUN Z, ZHOU D, ZHONG Z, et al, 2006. Research on the dynamics of the South China Sea opening: Evidence from analogue modeling[J]. Science in China Series D: Earth Sciences, 49: 1053-1069.
27 WATTS A B, KOPPERS A A, ROBINSON D P, 2010. Seamount subduction and earthquakes[J]. Oceanography, 23(1): 166-173.
28 YAMAZAKI T, OKAMURA Y, 1989. Subducting seamounts and deformation of overriding forearc wedges around Japan[J]. Tectonophysics, 160: 207-229.
文章导航

/