马里亚纳海沟俯冲带深地震现状对马尼拉海沟俯冲带的研究启示*
收稿日期: 2015-02-21
网络出版日期: 2016-02-02
基金资助
国家基金重大研究计划(91428204); 中国科学院战略性先导科技专项(B类)(XDB06030202)
Research on deep seismic structures of Mariana Trench subduction zone and its inspiration for Manila Trench subduction zone
Received date: 2015-02-21
Online published: 2016-02-02
Supported by
Natural Science Foundation of China (Major program) (contract: 91428204); Strategic Priority Research Program of the Chinese Academy of Science (contract: XDB06030202)
综述了马里亚纳海沟俯冲带二维(2D)和三维(3D)深地震探测的研究进展, 要点如下: 1)伊豆—小笠原岛弧下方玄武质火山岩的物质成分基本一致, 中地壳的速度特征与陆壳相似, 岛弧底部镁铁质到超镁铁质的壳幔过渡层(crust- mantle transition layer, CMTL)通过拆沉(delamination)等作用返回地幔, 实现由岛弧到陆壳的演化; 2)不同年龄的洋内岛弧具有不同的速度结构特征, 说明它们的地壳密度不同, 可用不同的模型来解释; 3)岛弧体系中速度结构及演化历史在时间和空间上的特征变化, 揭示了俯冲开始时洋壳和地幔的属性以及俯冲开始的原因。马尼拉海沟与马里亚纳海沟相比, 虽然地质背景不同, 但研究方法可以借鉴。今后的马尼拉海沟俯冲带探测的重点包括海底地震仪2D/3D联合探测、海底电磁探测, 以及天然地震的长期观测等。马尼拉海沟项目的实施将加深对俯冲带运行机制的认识。
赵明辉 , 贺恩远 , 孙龙涛 , 徐亚 , 游庆瑜 , 郝天珧 , 杜峰 , 丘学林 . 马里亚纳海沟俯冲带深地震现状对马尼拉海沟俯冲带的研究启示*[J]. 热带海洋学报, 2016 , 35(1) : 48 -60 . DOI: 10.11978/2015028
We review research on the two- (2D) and three-dimensional (3D) deep seismic structures of the Mariana Trench subduction zone. We find that (1) the bulk composition beneath the basaltic volcanoes is basically consistent along the Izu-Bonin Arc. The seismic velocities of the middle crust in the arc crust are similar to those in continental crust. For the arc crust evolving to normal continental crust, a process, such as delamination, is necessary for the component of lower crust interpreted as mafic to ultramafic crust-mantle transition layer (CMTL) returning to mantle; (2) the intra-oceanic arc crusts with different ages show dissimilar velocity structures, implying different density structures and crustal growth models; (3) the temporal and spatial variation of velocity structure and evolution history in the arc system reveals the features of oceanic crust and mantle at the beginning of subduction and the reasons of subduction. Although the geologic setting of the Mariana Trench is different from that of the Manila Trench subduction, the research method could be borrowed. The critical issues of research are put forward for the Manila Trench, which include: implementing 2D combined with 3D Ocean Bottom Seismometers (OBS) seismic experiments, carrying out Ocean Bottom ElectroMagnetometers (OBEM) surveys, and long-term observations on earthquakes happened near the area. The project of the Manila Trench is promising for making breakthrough in mechanism on a subduction zone.
1 陈洁, 温宁, 万荣胜, 等, 2010. 重要的海洋测绘成果—南海重磁异常图[J]. 海洋测绘, 30(6): 33-36. CHEN J, WEN N, WANG S R, et al, 2010. Characteristics of the geomagnetic field in the south china sea[J]. Progress in Geophys, 25(2): 376-388.
2 地质矿产部第二海洋地质调查大队, 1987. 南海地质地球物理图集(1︰200万). 广州: 广东省地图出版社. THE SECOND MARINE GEOLOGICAL INVESTIGATION BRIGADE OF THE MINISTRY OF GEOLOGY AND MARINE RESOURCES, 1987. Geological and Geophysical Atlas of South China Sea[M]. Guangzhou: Guangdong Atlas Publishing House.
3 丁巍伟, 陈汉林, 杨树锋, 等, 2003. 南海深海盆磁异常分析及其动力学意义[J]. 浙江大学学报(理学版), 30(2): 223-229. DING W W, CHEN H L, YANG S F, et al, 2003. Apply the interpolation cut method in magnetic anomaly analyse of the South China Sea[J]. Journal of Zhejiang University (Science Edition), 30(2): 223-229.
4 方迎尧, 周伏洪, 1998. 南海中央海盆条带状磁异常特征与海底扩张[J]. 物探与化探, 22(4): 272-278. FANG Y Y, ZHOU F H, 1998. Characteristics of striped magnetic anomalies in the central sea basin of the South China Sea[J]. Geophysical & Geochemical Exploration, 22(4): 272-278.
5 郝天珧, 徐亚, 赵百民, 等, 2009. 南海磁性基底分布特征的地球物理研究[J]. 地球物理学报, 52(11): 2763-2774. HAO T Y, XU Y A, ZHAO B M, et al, 2009. Geophysical research on distribution features of magnetic basements in the South China Sea[J]. Chinese Journal of Geophysics, 52(11): 2763-2774.
6 金钟, 李全兴, 杨华, 等, 2002. 南中国海西南部海盆海山古地磁研究[J]. 海洋通报, 21(2): 41-48. JIN Z, LI Q X, YANG H, et al, 2002. The development and paleomagnetics of seamounts in the subbasin of the South China Sea, China[J]. Marine Science Bulletin, 21(2): 41-48.
7 金钟, 2003. 南海中部海盆海山磁性反演及初步解析[J]. 海洋学报, 25(2): 57-66. JIN Z, 2003. Inversion magnetic anomalies of seamounts and preliminary analysis in the central basins of the South China Sea[J]. Acta Oceanologica Sinica, 25(2): 57-66.
8 李春峰, 宋陶然, 2012. 南海新生代洋壳扩张与深部演化的磁异常记录[J]. 科学通报, 57(20): 1879-1895. LI C F, SONG T R, 2012. Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin[J]. Chinese Science Bulletin, 57(20): 1879-1895.
9 刘光鼎, 1992a. 中国海区及邻域地质地球物理特征[M]. 北京: 科学出版社. LIU G D, 1992a. Geological and geophysical characteristics of China offshore and regional areas[M]. Beijing: Science Press.
10 刘光鼎, 1992b. 中国海区及邻域地质地球物理系列图(1:500 万)[Z]. 北京, 地质出版社. LIU G D, 1992b. The Geological and geophysical map of China’s Seas and adjacent areas (1︰5000000)[Z]. Beijing: Geological Pubilishing House.
11 刘海岭, 杨恬, 朱淑芬, 等, 2004. 南海西北部新生代沉积基底构造演化[J]. 海洋学报, 26(3): 54-67. LIU H L, YANG T, ZHU S F, et al, 2004. Tecotonic evolution of Cenozoic sedimentary basements in the northwestern South China Sea[J]. Acta Oceanologica Sinica, 26(3): 54-67.
12 吕文正, 柯长志, 吴声迪, 等, 1987. 南海中央海盆条带状磁异常特征及构造演化[J]. 海洋学报, 9(1): 69-78. LYU W Z, KE C Z, WU S D, et al, 1987. The characters of the magnetic anomaly and the revolution history in the South China Sea’s central basin[J]. The Chinese Oceanographys, 9(10): 69-78.
13 宋陶然, 李春峰, 2012. 由高密度磁异常测量数据分析南海海盆的扩张年龄与扩张模式[J]. 地球物理学报, 27(4): 1432-1442. SONG T R, LI C F. 2012. The opening ages and mode of the South China Sea estimated from high-density magnetic tracks[J]. Progress in Geophys, 27(4): 1432-1442.
14 姚伯初, 曾维军, HAVES D E, 等, 1994. 中美合作调研南海地质专报[M]. 武汉: 中国地质大学出版社. YAO B C, ZENG W J, HAYES D E, et al, 1984. The Geological Memoir of South China Sea surveyed jointly by China and USA[M]. Wuhan: China University of Geosciences Press.
15 张昌达, 2005. 中国大陆和南海卫星磁异常的初步解释[J]. 地质科技情报, 24(3): 99-103. ZHANG C D, 2005. A preliminary interpretation of satellite magnetic anomalies over China’s mainland and South China Sea[J]. Geological Science and Technology information, 4(3): 99-103.
16 BRIAIS A, PARTRIAT P, 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research, 98: 6299-6328.
17 BROWN L L, MCENROE S A, PECK W H, et al, 2011. Anorthosites as sources of Magnetic Anomalies[M] // PETROVSKÝ E, HERRERO-BERVERA E, HARINARAYANA T, et al. The Earth’s Magnetic Interior. New York: Springer: 321-342.
18 CANDE S C, KENT D V, 1995. Revised Calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic[J]. Journal of Geophysical Research, 100: 6093-6095.
19 CANNAT M, 1993. Emplacement of mantle rocks in the seafloor at mid-ocean ridges[J]. Journal of Geophysical Research, 98(B3): 4163-4172.
20 CANNAT M, LAGABRIELLE Y, BOUGAULT H, et al, 1997. Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: Geological mapping in the 15°N region[J]. Tectonophysics, 279(1-4): 193-213.
21 CHANNELL J E T, GALEOTTI S, MARTIN E E, et al, 2003. Eocene to Miocene magnetostratigraphy, biostratigraphy and chemostratigraphy at ODP Site 1090[J]. The Geological Society of America, 115: 607-623.
22 CHANNELL J E T, 2006. Late Brunhes polarity excursions (Mono Lake, Laschamp, Iceland Basin and Pringle Falls) recorded at ODP site 919 (Irminger Basin) [J]. Earth and Planetary Science Letters, 244: 378-393.
23 COX A, GORDON R G, 1984. Paleolatitudes determined from paleomagnetic data from vertical cores[J]. Review Geophysics, 22(1): 47-72.
24 DIETZE F, KONTNY A, HEYDE I, et al, 2011. Magnetic anomalies and rock magnetism of basalts from Reykjanes[J]. Studia Geophysica et Geodaetica, 55(1): 109-130.
25 DIVENERE V, KENT D V, 1999. Are the Pacific and Indo-Atlantic hotspots fixed? Testing the plate circuit through Antarctica[J]. Earth and Planetary Sciences Letters, 170: 105-117.
26 DOUBROVINE P V, TARDUNO J A, 2004. Self-reversed magnetization carried by titanomaghemite in oceanic basalts[J]. Earth and Planetary Sciences Letters, 222(3-4): 956-969.
27 FRANCHETEAU J, HARRISON C G A, SCLATER J G, et al, 1970. Magnetization of Pacific seamounts: A preliminary polar curve for the northeastern Pacific[J]. Journal of Geophysical Research, 75(11): 2035-2063.
28 GEE J, STAUDIGEL H, TAUXE L, 1989. Contributions of induced magnetization to magnetization of seamounts[J]. Nature, 342: 170-173.
29 GEE J S, LAWRENCE R M, HURST S D, 1997. Remanence characteristics of gabbros from the MARK area: Implications for crustal magnetization[J]. Proceedings of the Ocean Drilling Program, Scientific Results 153: 429-436.
30 GEE J S, KENT D V, 2007. Source of Oceanic Magnetic Anomalies and the Geomagnetic Polarity Timescales[M] // KONO M. Treatise on Geophysics Geomagnetism. Amsterdam: Elsevier: 455-507.
31 GUYODO Y, ACTON G D, STEFANIE B, et al, 2001. A sedimentary paleomagnetic record of the Matuyama chron from the Western Antarctic margin (ODP site 1101) [J]. Earth and Planetary Science Letters, 191: 61-74.
32 HALL J M, MUZZATTI A, 1999. Delayed magnetization of the deeper kilometer of oceanic crust at Ocean Drilling Project Site 504[J]. Journal of Geophysical Research, 104: 12843-12851.
33 HARRISON C G A, JARRARD R D, LARSON R L, 1975. Palaeomagnetism of Cretaceous Pacific seamounts[J]. Geophysical Journal of the Royal astronomical Society, 42: 859-882.
34 HAYES D E, NISSEN S S, 2005. The South China sea margins: Implications for rifting contrasts[J]. Earth and Planetary Science Letters, 237: 601-616.
35 HEIRTZLER D E, DICKSON E M, HERRON W C, et al, 1968. Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents[J]. Journal of Geophysical Research, 73: 2119-2136.
36 HERRERO-BERVERA E, ACTON G, KRÁSA D, et al, 1962. Rock Magnetic Characterization through an intact sequence of Oceanic Crust, IODP Hole 1256D[M] // PETROVSKÝ E, HERRERO-BERVERA E, HARINARAYANA T, et al. The Earth’s Magnetic Interior. New York: Springer, 2011: 153-168.
37 HILDEBRAND J A, PARKER R L, 1987. Paleomagnetism of Cretaceous Pacific seamounts revisited[J]. Journal of Geophysical Research, 92: 12695-12712.
38 HONSHO C, DYMENT J, TAMAKI K, 2009. Magnetic structure of a slow spreading ridge segment: Insights from near-bottom magnetic measurements on board a submersible[J]. Journal of Geophysical Research, 114: B05101. doi:10.1029/2008JB 005915.
39 HORNER-JOHNSON B C, GORDON R G, 2010. True polar wander since 32 Ma B.P.: A paleomagnetic investigation of the skewness of magnetic anomaly 12r on the Pacific Plate[J]. Journal of Geophyscial Research, 115: B09101. doi:10.1029/ 2009JB006862.
40 HORST A. J, VARGA R J, GEE J S, et al, 2011. Paleomagnetic constraints on deformation of superfast-spread oceanic crust exposed at Pito Deep Rift[J]. Journal of Geophysical Research, 116, B12103. doi:10.1029/2011JB008268.
41 HURST S D, KARSON J A, VEROSUB K L, 1994. Paleomagnetism of tilted dikes in fast spread oceanic crust exposed in the Hess Deep Rift: Implications for spreading and rift propagation[J]. Tectonics, 13: 789-802.
42 KLOOTWIJK C T, GEE J S, PEIRCE J W, et al, 1991. Constraints on the India-Asia convergence: Paleomagnetic results from Ninetyeast ridge[C]. Proceeding of the Ocean Drilling Program Scientific Results, 121: 777-881.
43 KOPPERS A P, YAMAZAKI T, GELDMACHER J, et al, 2012. Limited latitudinal mantle plume motion for the Louisville hotspot[J]. Nature Geoscience, 5: 911-917.
44 KRÁSA D, SHCHERBAKOV V P, KUNZMANN T, et al, 2005. Self-reversal of remanent magnetization in basalts due to partially oxidized titanomagnetite[J]. Geophysical Journal International, 162: 115-136.
45 KRÁSA D, HERRERO-BERVERA E, ACTON G, et al, 2011. Magnetic Mineralogy of a complete Oceanic crustal section (IODP Hole 1256D) [M] // PETROVSKÝ E, HERRERO- BERVERA E, HARINARAYANA T, et al. The Earth’s Magnetic Interior. New York: Springer: 169-179.
46 LARSON R L, CHASE C G, 1972. Late Mesozoic evolution of the western Pacific Ocean[J]. Geological Society of America Bulletin, 83: 3627-3644.
47 LAWRENCE R M, GEE J S, KARSON J A, 2000. Magnetic anisotropy of serpentinized peridotites from the MARK area: Implications for the orientation of mesoscopic structures and major fault zones[J]. Journal of Geophysical Research, 107, B4. doi:10.1029/2000JB000007.
48 LI C F, XU X, LIN J, et al, 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry Geophysics Geosystems, 15(12): 4958-4983.
49 LIU J X, SHI X F, LIU Q S, et al, 2014. Magnetostratigraphy of a greigite-bearing core from the South Yellow Sea: Implications for remagnetization and sedimentation[J]. Journal of Geophysical Research: 119. doi:10.1002/2014JB011206.
50 LOWRIE W, 1977. Intensity and direction of magnetization in oceanic basalts [J]. Journal of Geological Society of London, 133: 61-62.
51 LOWRIE W, KENT D V, 2004. Geomagnetic polarity timescales and reversal frequency regimes[M] // CHANNELL JET, KENT DV, LOWRIE W, et al. Timescales of the Paleomagnetic Field. Washington DC: American Geophysical Union: 117-129.
52 MERKOURIEV S, DEMETS C, 2006. Constraints on Indian plate motion since 20 Ma from dense Russian magnetic data: Implications for Indian plate dynamics[J]. Geochemistry Geophysics Geosystems, 7: Q02002. doi:10.1029/2005GC 001079.
53 MOLNAR P, ALTWATER T, 1973. Relative motion of hotspots in the mantle[J]. Nature, 246: 288-291.
54 MOLNAR P, STOCK J, 1987. Relative motions of hotspots in the Pacific, Atlantic, and Indian Oceans since Late Cretaceous time[J]. Nature, 327: 587-591.
55 MOLNAR P, ENGLAND P, MARTINOD, 1993. Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon[J]. Review of Geophysics 31: 357-396.
56 MOLNAR P, 2005. Mio-Plicene growth of the Tibetan plateau and evolution of Eastern Aidian climate[J]. Palaeontologia Electronica, 8, 2A: 1-23.
57 MORGAN W J, 1971. Convection plumes in the lower mantle[J]. Nature, 230: 42-43.
58 MORGAN W J, 1972. Plate motions and deep mantle convection[J]. Geology Society American Bulletin, 132: 7-22.
59 MOUNTAIN G S, PROUST J N, MCINROY D, et al, 2010. Proceedings of the Integrated Ocean Drilling Program, Volume 313[C]. Tokyo: Integrated Ocean Drilling Program Management International Inc: 23-25. doi:10.2204/iodp. proc.313.2010.
60 NORTON I O, 1995. Plate motions in the North Pacific: The 43 Ma Nonevent[J]. Tectonics, 14: 1080-1094.
61 OHNO M, MURAKAMI F, KOMATSU F, et al, 2008. Paleomagnetic directions of the Gauss-Matuyama polarity transition recorded in drift sediments (IODP Site U1314) in the North Atlantic[J]. Earth Planets Space, 60: 13-16.
62 PARKER R L, SHURE L, HILDEBRAND J A, 1987. The application of inverse theory to seamount magnetism[J]. Review of Geophysics, 25: 17-40.
63 PARKER R L, 1988. A statistical theory of seamount magnetism[J]. Journal of Geophysical Research, 93: 3105-3115.
64 PARKER R L, 1991. A theory of ideal bodies for seamount magnetism[J]. Journal of Geophysical Research, 96: 16101-16112.
65 PETRONOTIS K E, GORDON R G, ACTON G D, 1994. A 57 Ma Pacific plate palaeomagnetic pole determined from a skewness analysis of crossings of marine magnetic anomaly 25r[J]. Geophysical Journal International,118(3): 529-554.
66 PRÉVOT M, LECAILLE A, MANKINEN E A, 1981. Magnetic effects of maghemitization of oceanic crust[J]. Journal of Geophysical Research, 86: 4009-4020.
67 SAGER W W, 1983a. Seamount paleomagnetism and Pacific plate tectonics[M]. Honolulum: University of Hawaii: 1-472.
68 SAGER W W, 1983b. A late Eocene paleomagnetic pole for the Pacific plate[J]. Earth and Planetary Sciences Letters, 63: 408-422.
69 SAGER W W, 1987. Late Eocene and Maastrichtian paleomagnetic poles for the Pacific plate: implications for the validity of seamount paleomagnetic data[J]. Tectonophysics, 144, 301-314.
70 SAGER W W, PRINGLE M S, 1988. Mid-Cretaceous to early Tertiary apparent polar wander path of the Pacific plate[J]. Journal of Geophysical Research, 93, 11753-11771.
71 SATO T, OKINO K, KUMAGI H, 2009. Magnetic structure of an oceanic core complex at the southernmost Central Indian Ridge: Analysis of shipboard and deep-sea three-component magnetometer data[J]. Geochemistry Geophysics Geosystems, 10, Q06003. doi:10.1029/2008GC002267.
72 SHAU Y H, TORII M, HORNG C S, et al, 2000. Subsolidus evolution and alteration of titanomagnetite in ocean ridge basalts from Deep Sea Drilling Project/Ocean Drilling Program Hole 504B, Leg 83: Implication for the timing of magnetization[J]. Journal of Geophysical Research, 105: 23635-23649.
73 SINTON J M, DETRICK R S, 1992. Mid-ocean ridge magma chambers[J]. Journal of Geophysical Research, 97: 197-216.
74 SMITH G M, 1990. The magnetic structure of the marine basement[J]. Reviews in Aquatic Sciences, 2: 205-227.
75 SOLOMON S C, SLEEP N H, JURDY D M, 1977. Mechanical models for absolute plate motions in the Early Tertiary[J]. Journal of Geophysical Research, 82: 203-213.
76 SPERANZA F, SATOLLI S, MATTIOLI, 2005. Magnetic stratigraphy of Kimmeridgian-Aptian sections from Umbria- March (Italy): New details on the M polarity sequence[J]. Journal of Geophysical Research, 110: B12109.
77 STEINBERG B, SUTHERLAND R, O’CONELL R J, 2004. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow[J]. Nature, 430: 167-173.
78 SU K, LIU Q S, JIANG Z X, et al, 2015. Mechanism of magnetic property changes of serpentinites from ODP Holes 897D and 1070A[J]. Science China Earth Sciences, 58(5): 815-829.
79 SWANSON-HYSELL N L, FEINBERG J M, BERQUO T S, et al, 2011. Self-reversed magnetization held by martite in basalt flows from the 1.1-billion-year-old Keweenawan rift, Canada[J]. Earth and Planetary Sciences Letters, 305: 171-184.
80 TARDUNO J A, 1990. Absolute inclination values from deep sea sediments: a reexamination of the Cretaceous Pacific record[J]. Geophysical Research Letters, 17: 101-104.
81 TARDUNO J A, GEE J, 1995. Large scale motion between Pacific and Atlantic hotspots[J]. Nature, 378: 477-480.
82 TARDUNO J A, COTTRELL R D, 1997. Paleomagnetic evidence for motion of the Hawaiian hotspot during formation of the Emperor seamounts[J]. Earth and Planetary Sciences Letters, 153: 171-180.
83 TARDUNO J A, SMIRNOV A V, 2001. Stability of the Earth with respect to the spin axis for the last 130 million years[J]. Earth and Planetary Sciences Letters, 184: 549-553.
84 TARDUNO J A, DUNCAN R A, SCHOLL D W, et al, 2003. The emperor Seamonts: southward motion of the Hawaiian hotspot plume in Earth’s mantle[J]. Science, 301: 1064-1069.
85 TARDUNO J A, BUNGE H-P, SLEEP N, et al, 2009. The bent Hawaiian-Emperor Hotspot Track: Inheriting the mantle wind[J]. Science, 324: 50-53. doi:10.1126/science.1161256.
86 TAUXE L, STICKLEY C E, SUGISAKI S, et al, 2012. Chronostratigraphic framework for the IODP Expedition 318 cores from the Wilkes Land Margin: Constraints for paleoceanographic reconstruction[J]. Paleoceanography, 27: PA2214. doi:10.1029/2012PA002308.
87 TAYLOR B, HAYES D E, 1980. The tectonic evolution of the South China Basin[M] // HAYES D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and islands, Geophysical Monographs Series, vol 23. Washington, D.C: AGU: 89-104.
88 TAYLOR B, HAYES D E, 1983. Origin and history of the South China Sea Basin[M] // HAYES D E. Tectonic and Geologic Evolution of Southeast Asian Seas and islands (Pt. 2), Geophysical Monographs Series, vol 27. Washington, D C: AGU: 23-56.
89 TOMINAGA M, SAGER W W, 2010. Origin of the smooth zone in early Cretaceous North Atlantic magnetic anomalies[J]. Geophysical Research Letters, 37: L01304. doi:10.1029/2009 GL040986.
90 UYEDA S, RICHARDS M, 1966. Magnetization of four seamounts near the Japanese islands[J]. Bull Earthquake Res Inst Tokyo Univ, 44: 179-213.
91 VINE F J, MATTHEWS D H, 1965. Magnetic anomalies over oceanic ridges[J]. Nature, 199: 947-949.
92 WILLIAMS T, 2006. Magnetostratigraphy from downhole measurements in ODP holes[J]. Physics of the Earth and Planetary Interiors, 156: 261-273.
93 WORM H U, BACH W, 1996. Chemical remanent magnetization in oceanic sheeted dikes[J]. Geophysical Research Letters, 23: 1123-1126.
94 WORM H U, 2001. Magnetic stability of oceanic gabbros from ODP Hole 735B[J]. Earth and Planetary Sciences Letters, 193: 287-302.
95 YAO Z Q, SHI X F, LIU Q S, et al, 2014. Paleomagnetic and astronomical dating of sediment core BH08 from the Bohai Sea, China: Implications for glacial-interglacial sedimentation[J]. Palaeogeography Palaeoclimatology Palaeoecology, 393: 90-101.
/
〈 | 〉 |