海洋生物学

固氮作用对黑潮上游区域生态系统影响的模拟研究

  • 王艳君 ,
  • 董园 ,
  • 陈寅超 ,
  • 周卫文 ,
  • 李芊
展开
  • 1. 中国科学院南海海洋研究所, 广东 广州 510301;
    2. 惠州学院, 广东 惠州 516007
王艳君(1982—), 女, 广东省广州市人, 博士研究生, 研究方向为环境科学。E-mail: yanjun_wang82@126.com

收稿日期: 2014-12-30

  网络出版日期: 2016-02-02

基金资助

中国科学院战略性先导科技专项项目资助(XDA11020201-4)

Modeling the impact of N2-fixation on the ecosystem dynamics in the upstream Kuroshio

  • WANG Yanjun ,
  • DONG Yuan ,
  • CHEN Yinchao ,
  • ZHOU Weiwen ,
  • LI Qian
Expand
  • 1. South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
    2. HuiZhou University, Huizhou 51600, China

Received date: 2014-12-30

  Online published: 2016-02-02

Supported by

The Strategic Priority Research Program of the Chinese Academy of Science (XDA11020201-4)

摘要

为了研究固氮作用对黑潮上游区域生态系统的影响, 建立了一个包含固氮生物在内的NPZD(nutrient, phytoplankton, zooplankton, detritus)生物模型, 初步模拟结果与观测结果相吻合。通过比较模型中有固氮生物和无固氮生物两种情况下, 黑潮上游区域生态系统各参量以及各级生产力的差异, 揭示了该区域固氮生物的季节性分布特征, 阐明了固氮作用对海洋生态系统动力过程的重要影响。结果表明, 固氮生物由于水文和化学因素的影响, 主要出现在夏、秋季。固氮产生的新氮源使黑潮上游区域硝酸盐、铵盐、浮游动植物和大小碎屑的量都有明显增加。浮游植物的平均生长速率提高了大约64%, 初级生产力、再生生产力和新生产力分别增加了30%左右。在夏季50m以浅水体, 固氮作用支持了50%~80%的新生产力, 是新生产力的主要贡献者; 而在50~200m水体, 固氮作用支持了10%~50%的新生产力, 深层水的垂直混合带来的氮营养盐成为新生产力的主要贡献者。

本文引用格式

王艳君 , 董园 , 陈寅超 , 周卫文 , 李芊 . 固氮作用对黑潮上游区域生态系统影响的模拟研究[J]. 热带海洋学报, 2016 , 35(1) : 102 -111 . DOI: 10.11978/2015001

Abstract

An NPZD(nutrient, phytoplankton, zooplankton, detritus) model with incorporation of a diazotroph function group was used to simulate the temporal change of ecosystem in the upstream Kuroshio Current. The modeled nutrients, chlorophyll-a, and productivity showed good agreements with the observations. The impacts of N2-fixation on nutrient concentrations, plankton biomass, and detritus were assessed by comparisons of the modeled simulations with and without diazotrophs. Our results suggested that diazotrophs were most abundant in summer and fall when other phytoplankton were nitrogen limited. The mean growth of phytoplankton could increase by 64% with the input of new nitrogen from N2-fixation, leading to 30% increase of primary production, regenerated production, and new production, respectively. In summer, N2-fixation supported 50%~80% of the new production in the upper 50 m, but only 10%~50% in the depths of 50~200 m. This finding suggested that N2-fixation was an important source of new nitrogen for phytoplankton production above 50 m in the upstream Kuroshio, but new production below 50 m was largely contributed by the vertical nutrient fluxes from below.

参考文献

1 陈渭民, 2003. 雷电学原理[M]. 北京: 气象出版社: 60-62. CHEN W M, 2003. Principles of the thunder and lightning[M]. Beijing: China Meteorological Press: 60-62.
2 耿雪莹, 张其林, 刘明远, 2012. 地面建筑物(群)对雷暴云大气电场影响的模拟研究[J]. 气象科技, 2012, 40(5): 827-833. GENG X Y, ZHENG Q L, LIU M Y, et al, 2012. Effect of Tall Buildings on Thunderstorm Electric Field[J]. Meteorological science and technology, 40(5): 827-833.
3 郭秀峰, 谭涌波, 郭凤霞, 等, 2013. 建筑物尖端对大气电场畸变影响的数值计算[J]. 应用气象学报, 24(2): 189-196. GUO X F, TAN Y B, GUO F X, et al, 2013. Numerical simulation of effects of building tip on atmospheric electric field distortion[J]. Journal of applied meteorological science. 24(2): 189-196.
4 李建粮, 张其林, 颜颖, 2009. 安装环境对大气电场仪测量结果影响的模拟研究: 第九届长三角气象科技论坛论文集[C]. 江苏, 镇江: 第九届长三角气象科技论坛: 1-7.
5 盛裴轩, 毛节泰, 李建国, 等, 2003. 大气物理学[M]. 北京: 北京大学出版社: 382-383. SHENG P X, MAO J T, LI J G, et al, 2003. Atmospheric physics[M]. Beijing: Peking University Press: 382-383.
6 杨波, 邱实, 高太长, 2007. 大气电场仪联网数据一致性及预警方式的改进[J]. 解放军理工大学学报(自然科学版), 8(4): 400-403. YANG B, QIU S, GAO T C, 2007. Atmospheric electric field monitoring net’s data coherence and amelioration for alarm mode[J]. Journal of PLA University of Science and Technology, 8(4): 400-403.
7 周璧华, 姜慧, 杨波, 等, 2010a. 地物环境对地面大气电场测量的影响[J]. 电波科学学报. 25(5): 839-844. ZHOU B H, JIANG H, YANG B, et al, 2010a. Influence of surface features on atmospheric electric field near ground[J]. Chinese Journal of Radio Science, 25(5): 839-844.
8 周璧华, 姜慧, 刘海波, 等, 2010b. 地面与空中大气电场的对应关系研究[J]. 电波科学学报. 25(1): 20-25. ZHOU B H, JIANG H, LIU H B, et al, 2010b. Relationship between aloft and ground atmospheric electric field[J]. Chinese Journal of Radio Science. 25(1): 20-25.
9 ADZHIEV A, BOLDYREFF A, GYATOV R, et al, 2014. Atmospheric electric field measurements on the High- Mountain Stations near Elbrus[C/OL]. Norman, Oklahoma, USA: ⅩⅤInternational Conference on Atmospheric Electricity.http://www.nssl.noaa.gov/users/mansell/icae2014/preprints/Adzhiev_2.pdf.
10 ANISIMOV S V, SHIKHOVA NM, 2009. Research of an electric component of middle-latitude region climate[J]. Russian Journal of Earth Sciences, 11: RE2005. doi:10.2205/ 2009ES000363.
11 BENNETT A, 2007. Measurement of atmospheric electricity during different meteorological conditions[D]. Reading: University of Reading.
12 PETROVA G , PETROV A, PANCHISHKINA I, et al, 2011. The expedition research of processes of the atmospheric electrode layer formation[C]. Rio de Janeiro, Brazil: Proc 14th International Conference on Atmospheric Electricity: 181-185.
文章导航

/