海洋水文学

太平洋沃克环流近几十年来的加强

  • 孙稚权 ,
  • 项杰 ,
  • 管玉平
展开
  • 1. 中国人民解放军理工大学气象海洋学院, 江苏 南京 211101; 2. 热带海洋环境国家重点实验室(中国科学院南海海洋研究所), 广东 广州 510301;
孙稚权(1990—), 男, 甘肃省兰州市人, 硕士研究生, 主要从事海气相互作用研究。E-mail: sunzhiquan15@sina.com

收稿日期: 2015-07-04

  修回日期: 2015-11-06

  网络出版日期: 2016-02-29

基金资助

国家重点基础研究发展计划项目( 2013CB956201); 国家自然科学基金项目(41275113)

Strengthening of the Pacific Walker Circulation in the recent decades

  • SUN Zhiquan ,
  • XIANG Jie ,
  • GUAN Yuping
Expand
  • 1. PLA University of Science and Technology, Institute of Meteorology and Oceanography, Nanjing 211101, China; 2. State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences),;Guangzhou 510301, China;

Received date: 2015-07-04

  Revised date: 2015-11-06

  Online published: 2016-02-29

Supported by

National Program on Key Basic Research Project ( 2013CB956201); National Natural Science Foundation of China (41275113)

摘要

太平洋沃克环流的强度随全球变暖而减弱, 但有研究表明近几十年太平洋沃克环流呈增强趋势, 两者是否矛盾?文章用1979年至2014年的再分析数据资料分析了近几十年来太平洋沃克环流强度的变化特征, 各要素场均表明太平洋沃克环流的强度在过去几十年呈显著的增强趋势, 且太平洋沃克环流的强度在年际变化尺度上与ENSO相关性很强。之前有关太平洋沃克环流的研究多局限于太平洋海盆内部, 文章通过印太三极模态理论对太平洋沃克环流的年代际变化进行解释。研究发现, 印度洋沃克环流与太平洋沃克环流存在同样的增强趋势。印太暖池海温、印度洋-太平洋沃克环流及海洋性大陆区域上升运动组成了一个简单的反馈系统, 暖池海温的升高使海洋性大陆区域大气辐聚上升运动增强, 两沃克环流随之增强; 底层纬向风的增强使暖池区域的暖水堆积增多, 从而使暖池区海温进一步升高, 两沃克环流也进一步增强。同时近几十年太平洋年代际振荡(PDO)由暖位相到冷位相的转换导致中东太平洋海温降低, 暖池增暖及中东太平洋变冷使太平洋海温梯度增加, 最终导致太平洋沃克环流过去几十年的增强。

本文引用格式

孙稚权 , 项杰 , 管玉平 . 太平洋沃克环流近几十年来的加强[J]. 热带海洋学报, 2016 , 35(2) : 19 -29 . DOI: 10.11978/2015088

Abstract

There is evidence showing a long-term weakened trend of the tropical Pacific Walker Circulation under global warming condition, consistent with the expectation that the circulation will be weakened further. But recent research shows that the Walker Circulation has intensified over the recent decades. Is there any contradiction between the two? We analyzed the strength change of the Walker Circulation during the last decades using the reanalysis data of the tropical Pacific over the 36-year period from 1979 to 2014. The result showed an overall trend towards a stronger La Niña-like Walker Circulation. On the interannual timescale, the El Niño-Southern Oscillation (ENSO) accounts for much of the variability in the Pacific Walker Circulation; but the strengthening of the Pacific Walker Circulation in the recent decades cannot be explained by global warming or ENSO. The Indo-West Pacific sea surface temperature (SST), the Indian Ocean-Pacific Walker Circulation, the SST over the Indo-Pacific region, and Maritime Continent area’s upward movement constituted a simple positive feedback system: stronger Walker Circulation accelerates more warm water to the warm pool area. Warmer SST in the warm pool region strengthens the convergence and upward motion over the Maritime Continent, which makes the Walker Circulation stronger. Besides, the Pacific Decadal Oscillation (PDO) was in the transition from cold phase to warm phase over the past decades, which intensified Pacific zonal SST gradient. The tropical Indo-West Pacific warming, tropical central eastern Pacific cooling and a closer connection between the two basins were the reasons of enhancement of Pacific Walker Circulation over the past decades.

参考文献

[1] 巢纪平, 袁绍宇, 2004. 热带印度洋和太平洋海气相互作用事件的协调发展[J]. 海洋科学进展, 22(3): 247–252. CHAO J P, YUAN S Y, 2004. Concerted development of atmosphere- ocean interaction events in the tropical Indian Ocean and Pacific Ocean [J]. Advances in Marine Science, 22(3): 247–252. (in Chinese).
[2] 黎鑫, 李崇银, 谭言科, 等, 2013. 热带太平洋—印度洋温跃层海温异常联合模及其演变[J]. 地球物理学报, 56(10): 3270–3284. LI X, LI C Y, TAN Y K, et al, 2013. Tropical Pacific-Indian Ocean thermocline temperature associated anomaly mode and its evolvement [J]. Chinese Journal of Geophysics, 56(1): 3270– 3284 (in Chinese).
[3] 王闪闪, 管玉平, 黄建平, 2012. 黑潮及其延伸区海表温度变化特征与大气环流相关性的初步分析[J]. 物理学报, 61(16): 510–520. WANG S S, GUAN Y P, HUANG J P, et al, 2012. Preliminary analyses on characteristics of sea surface temperatures in Kuroshio and its extension and relations to atmospheric circulations [J]. Acta Physica Sinica, 61(16): 6446–6449 (in Chinese).
[4] 吴国雄, 孟文, 1998. 赤道印度洋—太平洋地区海气系统的齿轮式耦合和 ENSO 事件 I. 资料分析[J]. 大气科学, 22(4): 470–480. WU G X, MENG W, 1998. Gearing between the Indo-monsoon circulation and the Pacific-Walker circulation and the ENSO. Part I: Data analyses [J]. Scientia Atmospherica Sinica, 22(4): 470–480 (in Chinese).
[5] 杨辉, 李崇银, 2005. 热带太平洋-印度洋海温异常综合模对南亚高压的影响[J]. 大气科学, 29(1): 99–110. YANG H, LI C Y, 2005. Effect of the tropical Pacific-Indian Ocean temperature anomaly mode on the South Asia High [J]. Chinese Journal of Atmospheric Sciences, 29(1): 99–110 (in Chinese).
[6] ANNAMALAI H, XIE S P, MCCREARY J P, et al, 2005. Impact of Indian Ocean sea surface temperature on developing El Ni?o [J]. Journal of Climate, 18(2): 302–319.
[7] BJERKNES J, 1969. Atmospheric teleconnections from the equatorial Pacific [J]. Monthly Weather Review, 97(3): 163–172.
[8] CHEN D, 2011. Indo-Pacific Tripole: An intrinsic mode of tropical climate variability [J]. Adv Geosci, 24: 1–18.
[9] DESER C, PHILLIPS A S, HURRELL J W, 2004. Pacific interdecadal climate variability: Linkages between the Tropics and the North Pacific during boreal winter since 1900[J]. Journal of Climate, 17(16): 3109–3124.
[10] DINEZIO P N, VECCHI G A, CLEMENT A C, 2013. Detectability of changes in the Walker Circulation in response to global warming [J]. Journal of Climate, 26(12): 4038–4048.
[11] DONG B, LU R Y, 2013. Interdecadal enhancement of the walker circulation over the Tropical Pacific in the late 1990s [J]. Advances in Atmospheric Sciences, 30(2): 247–262.
[12] DU Y, WU Y L, 2013. A new type of the Indian Ocean Dipole since the mid-1970s[J]. Journal of Climate, 26(3): 959–972.
[13] DU Y, ZHANG Y H, FENG M, et al, 2015. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s [J]. Scientific Reports, 5: 16050. doi: 10.1038/srep 16050.
[14] ENGLAND M H, MCGREGOR S, SPENCE P, et al, 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus [J]. Nature Climate Change, 4(3): 222–227.
[15] FENG J, LI J, 2011. Influence of El Ni?o Modoki on spring rainfall over south China [J]. Journal of Geophysical Research, 116, D13102. doi: 10.1029/2010JD015160.
[16] FU Q, MANABE S, JOHANSON C M, 2011. On the warming in the tropical upper troposphere: Models versus observations [J]. Geophysical Research Letters, 38(15): 532–560.
[17] FU R, DEL GENIO A D, ROSSOW W B, 1994. Influence of ocean surface conditions on atmospheric vertical thermodynamic structure and deep convection [J]. Journal of Climate, 7(7): 1092–1108.
[18] GASTINEAU G, LI L, LE TREUT H, 2009. The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations [J]. Journal of Climate, 22(14): 3993–4013.
[19] GRAHAM N E, 1994. Decadal-scale climate variability in the 1970s and 1980s: Observations and model results [J]. Climate Dyn, 10: 135–162.
[20] HARE S R, MANTUA N J, 2000. Empirical evidence for North Pacific regime shifts in 1977 and 1989[J]. Progress in Oceanography, 47(2): 103–145.
[21] HELD I M, SODEN B J, 2006. Robust responses of the hydrological cycle to global warming [J]. Journal of Climate, 19(21): 5686–5699.
[22] HOLTON J R, DMOWSKA R, 1990. El Ni?o, La Ni?a, and the Southern Oscillation [M]. New York: Academic Press: 293.
[23] HOREL J D, WALLACE J M, 1981. Planetary-scale atmospheric phenomena associated with the Southern Oscillation [J]. Monthly Weather Review, 109(4): 813–829.
[24] HUANG X, CHUANG H W, DESSLER A, et al, 2013. A Radiative-convective equilibrium perspective of weakening of the tropical Walker Circulation in response to global warming [J]. Journal of Climate, 26(5): 1643–1653.
[25] KALNAY E, KANAMITSU M, KISTLER R, et al, 1996. The NCEP/NCAR 40-Year Reanalysis Project[J]. Bulletin of the American Meteorological Society, 77: 437-472.
[26] KARNAUSKAS K B, SEAGER R, KAPLAN A, et al, 2009. Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean [J]. Journal of Climate, 22(16): 4316–4321 .
[27] KLEIN S A, SODEN B J, LAU N C, 1999. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge [J]. Journal of Climate, 12(4): 917–932.
[28] KNUTSON T R, MANABE S, 1995. Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean- atmosphere model [J]. Journal of Climate, 8(7): 2181–2199.
[29] L’HEUREUX M L, LEE S, LYON B, 2013. Recent multi-decadal strengthening of the Walker circulation across the tropical Pacific [J]. Nature Climate Change, 3(6): 571–576.
[30] LI G, REN B, 2012. Evidence for strengthening of the tropical Pacific Ocean surface wind speed during 1979–2001 [J]. Theoretical and Applied Climatology, 107(1/2): 59–72.
[31] LIEBMANN B, SMITH C A, 1996. Description of a complete (interpolated) outgoing longwave radiation dataset[J]. Bull Amer Meteor.Soc, 77(6): 1275–1277.
[32] LUO J J, SASAKI W, MASUMOTO Y, 2012. Indian Ocean warming modulates Pacific climate change [G]. Proceedings of the National Academy of Sciences, 109(46): 18701–18706.
[33] MA S M, ZHOU T J, 2014. Changes of the tropical Pacific Walker circulation simulated by two versions of FGOALS model [J]. Science China, 9 (9): 2165–2180.
[34] MANN H B, 1945. Nonparametric tests against trend [J]. Econometrica, 13(3): 245–259.
[35] MANTUA N J, HARE S R, 2002. The Pacific decadal oscillation [J]. Journal of Oceanography, 58(1): 35–44.
[36] MCGREGOR S, TIMMERMANN A, STUECKER M F, et al, 2014. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming [J]. Nature Climate Change, 4(10): 888–892.
[37] MEEHL G A, HU A, SANTER B D, 2008. The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability[J]. Journal of Climate, 22(3) 780–792.
[38] MEEHL G A, ARBLASTER J M, FASULLO J T, et al, 2011. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods [J]. Nature Climate Change, 1(7): 360–364.
[39] MENG Q, LATIF M, PARK W, et al, 2012. Twentieth century Walker Circulation change: Data analysis and model experiments [J]. Climate Dynamics, 38(9/10): 1757–1773.
[40] PHILANDER S, 1990. El Ni?o, La Ni?a, and the Southern Oscillation [J]. International Geophysics Series, 46: 248.
[41] POWER S B, SMITH I N, 2007. Weakening of the Walker Circulation and apparent dominance of El Ni?o both reach record levels, but has ENSO really changed?[J]. Geophysical Research Letters, 34(18): L187024.
[42] POWER S B, KOCIUBA G, 2011. What caused the observed twentieth-century weakening of the Walker circulation?[J]. Journal of Climate, 24(24): 6501–6514.
[43] ROCA R, GUZMAN R, LEMOND J, et al, 2012. Tropical and extra-tropical influences on the distribution of free tropospheric humidity over the intertropical belt [J]. Surveys in Geophysics, 33(3/4): 565–583.
[44] SAJI N H, GOSWAMI B N, VINAYACHANDRAN P N, et al, 1999. A dipole mode in the tropical Indian Ocean [J]. Nature, 401(6751): 360–363.
[45] SIMMONS A, UPPALA S, DEE D, et al, 2007. ERA-Interim: New ECMWF reanalysis products from 1989 onwards [J]. ECMWF Newsletter, 110(110): 25–35.
[46] SOHN B J, PARK S C, 2010. Strengthened tropical circulations in past three decades inferred from water vapor transport [J]. Journal of Geophysical Research, 115(D15): 4447–4458.
[47] SOHN B J, YEH S W, SCHMETZ J, et al, 2013. Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results [J]. Climate Dynamics, 40(7/8): 1721–1732.
[48] TANAKA H L, ISHIZAKI N, KITOH A, 2004. Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere [J]. Tellus A, 56(3): 250–269.
[49] TOKINAGA H, XIE S P, DESER C, et al, 2012. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming [J]. Nature, 491(7424): 439–443.
[50] UPPALA S M, K?LLBERG P W, SIMMONS A J, et al, 2005. The ERA-40 re-analysis [J]. Quarterly Journal of the Royal Meteorological Society, 131(612): 2961–3012.
[51] VECCHI G A, SODEN B J, WITTENBERG A T, et al, 2006. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing [J]. Nature, 441(7089): 73–76.
[52] WALISER D E, GRAHAM N E, 1993. Convective cloud systems and warm pool SSTs: Coupled interactions and selfregula?tion [J]. Geophys Res, 98: 12881–12893.
[53] WALKER G, 1928. World weather [J]. Quarterly Journal of the Royal Meteorological Society, 54(5): 79–87.
[54] WANG H, MEHTA V M, 2008. Decadal variability of the Indo-Pacific warm pool and its association with atmospheric and oceanic variability in the NCEP-NCAR and SODA reanalyses [J]. Journal of Climate, 21(21): 5545–5565.
[55] WEBSTER P J, MOORE A M, LOSCHNIGG J P, et al, 1999. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98[J]. Nature, 401(6751): 356–360.
[56] WOODRUFF S D, WORLEY S J, LUBKER S J, et al, 2011. ICOADS Release 2.5: Extensions and enhancements to the surface marine meteorological archive [J]. Int J Climatol, 31: 951–967.
[57] XIAO D, 2007. Main decadal abrupt changes and decadal modes in global sea surface temperature field [J]. Chinese Journal of Atmospheric Sciences, 31(5): 839–854.
[58] YUAN Y, LI C Y, 2008. Decadal variability of the IOD-ENSO relationship [J]. Chinese Science Bulletin, 53(11): 1745–1752.
[59] ZHANG M, SONG H, 2006. Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific [J]. Geophysical Research Letters, 33(12), 374–366.
[60] ZHENG C W, LI C Y, 2015. Variation of the wave energy and significant wave height in the China Sea and adjacent waters [J]. Renewable and Sustainable Energy Reviews, 43: 381–387.
文章导航

/