海洋地质学

珠江口盆地白云凹陷裂陷期断裂结构与演化特点

  • 张九园 ,
  • 孙珍 ,
  • 郑金云
展开
  • 1. 中国科学院南海海洋研究所, 中国科学院边缘海地质重点实验室, 广东 广州 510301;
    2. 中国科学院大学, 北京 100049;
    3. 中海石油(中国)有限公司深圳分公司, 广东 广州 510240
张九园(1990—), 男, 硕士研究生, 主要从事海洋地质沉积与构造方向研究。E-mail: zhangjiuyuan13@mails.ucas.ac.cn

收稿日期: 2015-10-10

  网络出版日期: 2016-08-04

基金资助

国家重大油气专项(2011ZX05025-003-005); 国家自然科学基金委员会—广东省联合基金项目(U1301233)

The structure and evolving history of faults during rifting stage in Baiyun Sag, Pearl River Mouth Basin

  • ZHANG Jiuyuan ,
  • SUN Zhen ,
  • ZHENG Jinyun
Expand
  • 1. Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Shenzhen Branch, China National Offshore Oil Corporation Limited (CNOOC Ltd), Guangzhou 510240, China;

Received date: 2015-10-10

  Online published: 2016-08-04

Supported by

Major National Oil and Gas Projects(2011ZX05025-003-005); The Joint Program of NSFC and Guangdong Province (U1301233)

摘要

珠江口盆地白云凹陷地处南海北部深水陆坡区, 经历了古近纪两幕裂陷作用, 新近纪裂后沉降作用和中中新世以后的构造活化作用, 形成了多期继承性和新生性的断层系统。文章首先按剖面形态将裂陷期断层分为三类: 第一类为板式断层, 通常只断穿T60、T70和T80; 第二类为铲式断层, 断穿包括Tg在内的较多层位; 第三类为拆离断层, 断穿Tg层位, 垂向断距较铲式断层更大。然后, 利用高精度二维和三维地震剖面对白云凹陷南缘控凹断层的组合样式、活动性及演化史进行了分析, 结果表明: 在白云凹陷西南部发育雁列式断层组合, 雁列式断层组合中的铲式断层之间通过发育连接断层(板式断层), 调节变形或位移而保持区域伸展应变守恒; 白云凹陷中部大型断层存在平行发育关系, 4条铲式断层首先发育, 同步运动, 其中最靠近凹陷的一条活动速率最大, 板式断层在其断块之上后期发育; 而在白云凹陷东部的南侧边缘发育有低角度拆离断层, 在拆离断层上盘高角度旋转断块呈多米诺式排列, 下部整体滑移。在剖面活动性分析基础上文章探讨了其成因机制, 为白云凹陷油气勘探提供参考。

本文引用格式

张九园 , 孙珍 , 郑金云 . 珠江口盆地白云凹陷裂陷期断裂结构与演化特点[J]. 热带海洋学报, 2016 , 35(4) : 82 -94 . DOI: 10.11978/2015124

Abstract

Located at the northern continental slope of the South China Sea, Baiyun Sag of the Pearl River Mouth Basin has gone through the evolution of two episodes of Paleogene rifting, Neogene post-rift subsiding, and tectonic reactivation after middle Miocene. Multi-phase fault systems were developed, and showed both inherited and newborn features. In this study, we divided faults during rifting stage into three kinds according to their scarp shapes. The first kind is planar fault, which usually cuts through only T60, T70 and/or T80, and has a straight fault plane. The second kind is listric fault, cutting through more horizons including Tg. The third kind is detachment fault, which cuts through Tg. Usually, it has a larger vertical displacement than the second kind. Then, we analyzed tectonic style, activity and evolving history of the sag-controlling faults combinations in the southern boundary of the Baiyun Sag with high-resolution 2D and 3D seismic profiles. The results are as follows: there developed large en echelon sag-controlling faults in the southwest of the sag, between them a connecting fault (planar fault) developed to keep regional stretch strain conservation by adjusting deformation and displacement. In the middle of Baiyun Sag’s southern part, four big listic faults are parallel to each other; they started activity at similar times, but the one near the sag center has the largest vertical offset; later the planar faults developed between them. In the northeast of Baiyun Sag, there developed low angle detachment faults in the sag boundary. High angle rotated fault blocks appeared as domino style and stopped their faulting by joining in the detachment fault. Based on the above profile analysis, this paper discussed the formation mechanism of the above-mentioned three kinds of sag-controlling fault systems, providing a reference to deep-sea oil-gas exploration. (in Chinese with English abstract)

参考文献

[1] 陈骏, 2008. 珠江口盆地白云凹陷断裂系统特征研究[D]. 成都: 成都理工大学: 1-101. CHEN JUN, 2008. Research of characteristics of the faults in the Baiyun Depression of the Pearl River Mouth Basin[D]. Chengdu: Chengdu University of Technology: 1-101 (in Chinese with English abstract).
[2] 雷超, 任建业, 张静, 2015. 南海构造变形分区及成盆过程[J]. 地球科学-中国地质大学学报, 40(4): 744-762. LEI CHAO, REN JIANYE, ZHANG JING, 2015. Tectonic province divisions in the South China Sea: Implications for basin geodynamics[J]. Earth Science-Journal of China University of Geosciences, 40(4): 744-762 (in Chinese with English abstract).
[3] 李云, 2012. 珠江口盆地白云凹陷中新统珠江组深水沉积学[D]. 成都: 成都理工大学: 1-143. LI YUN, 2012. Deep-water sedimentology of the Miocene Zhujiang Formation in Baiyun Sag, Pearl River Mouth Basin[D]. Chengdu: Chengdu University of Technology: 1-143 (in Chinese with English abstract).
[4] 柳保军, 申俊, 庞雄, 等, 2007. 珠江口盆地白云凹陷珠海组浅海三角洲沉积特征[J]. 石油学报, 28(2): 49-56, 61. LIU BAOJUN, SHEN JUN, PANG XIONG, et al, 2007. Characteristics of continental delta deposits in Zhuhai Formation of Baiyun Depression in Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 28(2): 49-56, 61 (in Chinese with English abstract).
[5] 柳保军, 庞雄, 颜承志, 等, 2011. 珠江口盆地白云深水区沉积充填演化及控制因素分析[J]. 中国海上油气, 23(1): 19-25. LIU BAOJUN, PANG XIONG, YAN CHENGZHI, et al, 2011. An analysis of depositional evolution and its controls in Baiyun deep-water area, Pearl River Mouth basin[J]. China Offshore Oil and Gas, 23(1): 19-25 (in Chinese with English abstract).
[6] 庞雄, 陈长民, 朱明, 等, 2006. 南海北部陆坡白云深水区油气成藏条件探讨[J]. 中国海上油气, 18(3): 145-149. PANG XIONG, CHEN CHANGMIN, ZHU MING, et al, 2006. A discussion about hydrocarbon accumulation conditions in Baiyun Deep-water Area, the northern continental slope, South China Sea[J]. China Offshore Oil and Gas, 18(3): 145-149 (in Chinese with English abstract).
[7] 庞雄, 陈长民, 彭大钧, 等, 2007. 南海珠江深水扇系统及油气[M]. 北京: 科学出版社: 1-303.
[8] 庞雄, 陈长民, 陈红汉, 等, 2008. 白云深水区油气成藏动力条件研究[J]. 中国海上油气, 20(1): 9-14. PANG XIONG, CHEN CHANGMIN, CHEN HONGHAN, et al, 2008. A study on hydrocarbon accumulation dynamics in Baiyun deep-water area, Pearl River Mouth basin[J]. China Offshore Oil and Gas, 20(1): 9-14 (in Chinese with English abstract).
[9] 彭大钧, 陈长民, 庞雄, 等, 2004. 南海珠江口盆地深水扇系统的发现[J]. 石油学报, 25(5): 17-23. PENG DAJUN, CHEN CHANGMIN, PANG XIONG, et al, 2004. Discovery of deep-water fan system in South China Sea[J]. Acta Petrolei Sinica, 25(5): 17-23 (in Chinese with English abstract).
[10] 秦国权, 2002. 珠江口盆地新生代晚期层序地层划分和海平面变化[J]. 中国海上油气(地质), 16(1): 1-10, 18. QIN GUOQUAN, 2002. Late Cenozoic sequence stratigraphy and sea-level changes in Pearl River Mouth Basin, South China Sea[J]. China Offshore Oil and Gas (Geology), 16(1): 1-10, 18 (in Chinese with English abstract).
[11] 任建业, 庞雄, 雷超, 等, 2015a. 南海北部陆缘深水—超深水盆地结构和演化[C]//中国科学技术协会. 第十七届中国科协年会——分9 南海深水油气勘探开发技术研讨会论文集. 广州: 中国科学技术协会学会学术部.
[12] 任建业, 庞雄, 雷超, 等, 2015b. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 22(1): 102-114. REN JIANYE, PANG XIONG, LEI CHAO, et al, 2015b. Ocean and continent transition in passive continental margins and analysis of lithospheric extension and breakup process: implication for research of the deepwater basins in the continental margins of South China Sea[J]. Earth Science Frontiers, 2015, 22(1): 102-114 (in Chinese with English abstract).
[13] 邵磊, 庞雄, 乔培军, 等, 2008. 珠江口盆地的沉积充填与珠江的形成演变[J]. 沉积学报, 26(2): 179-185. SHAO LEI, PANG XIONG, QIAO PEIJUN, et al, 2008. Sedimentary filling of the Pearl River Mouth Basin and its response to the evolution of the Pearl River[J]. Acta Sedimentologica Sinica, 26(2): 179-185 (in Chinese with English abstract).
[14] 施和生, 柳保军, 颜承志, 等, 2010. 珠江口盆地白云-荔湾深水区油气成藏条件与勘探潜力[J]. 中国海上油气, 22(6): 369-374. SHI HESHENG, LIU BAOJUN, YAN CHENGZHI, et al, 2010. Hydrocarbon accumulation conditions and exploration potential in Baiyun-Liwan deepwater area, Pearl River Month basin[J]. China Offshore Oil and Gas, 22(6): 369-374 (in Chinese with English abstract).
[15] 孙龙涛, 周蒂, 陈长民, 等, 2008. 珠江口盆地白云凹陷断裂构造特征及其活动期次[J]. 热带海洋学报, 27(2): 25-31. SUN LONGTAO, ZHOU DI, CHEN CHANGMIN, et al, 2008. Fault structure and evolution of Baiyun Sag in Zhujiang River Mouth Basin[J]. Journal of Tropical Oceanography, 27(2): 25-31 (in Chinese with English abstract).
[16] 孙珍, 庞雄, 钟志洪, 等, 2005. 珠江口盆地白云凹陷新生代构造演化动力学[J]. 地学前缘, 12(4): 489-498. SUN ZHEN, PANG XIONG, ZHONG ZHIHONG, et al, 2005. Dynamics of Tertiary tectonic evolution of the Baiyun Sag in the Pearl River Mouth Basin[J]. Earth Science Frontiers, 12(4): 489-498 (in Chinese with English abstract).
[17] 王燮培, 费琪, 张家骅, 1990. 石油勘探构造分析[M]. 北京: 中国地质大学出版社: 68-78.
[18] 朱志澄, 1987. 伸展构造和拆离断层[J]. 地质科技情报, 6(1): 18-25.
[19] BRUN J-P, SOKOUTIS D, VAN DEN DRIESSCHE J, 1994. Analogue modeling of detachment fault systems and core complexes[J]. Geology, 22(4): 319-322.
[20] BUCK W R, 1988. Flexural rotation of normal faults[J]. Tectonics, 7(5): 959-973.
[21] DAVIS G A, ANDERSON J L, FROST E G, et al, 1980. Mylonitization and detachment faulting in the Whipple- Buckskin-Rawhide Mountains terrane, southeastern California and western Arizona[J]. Geological Society of America Memoirs, 153: 79-130.
[22] LISTER G S, ETHERIDGE M A, SYMONDS P A, 1986. Detachment faulting and the evolution of passive continental margins[J]. Geology, 14(3): 246-250.
[23] LISTER G S, DAVIS G A, 1989. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A.[J]. Journal of Structural Geology, 11(1-2): 65-94.
[24] MASINI E, MANATSCHAL G, TUGEND J, et al, 2014. The tectono-sedimentary evolution of a hyper-extended rift basin: The example of the Arzacq-Mauléon rift system (Western Pyrenees, SW France)[J]. International Journal of Earth Sciences, 103(6): 1569-1596.
[25] MORLEY C K, NELSON R A, PATTON T L, et al, 1990. Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts[J]. AAPG Bulletin, 74(8): 1234-1253.
[26] PEACOCK D C P, SANDERSON D J, 1994. Geometry and development of relay ramps in normal fault systems[J]. AAPG Bulletin, 78(2): 147-165.
[27] PIERCE W G, 1963. Reef Creek detachment fault, northwestern Wyoming[J]. Geological Society of America Bulletin, 74(10): 1225-1236.
[28] SCOTT R J, LISTER G S, 1992. Detachment faults: evidence for a low-angle origin[J]. Geology, 20(9): 833-836.
[29] SINGLETON J S, MOSHER S, 2012. Mylonitization in the lower plate of the Buckskin-Rawhide detachment fault, west-central Arizona: implications for the geometric evolution of metamorphic core complexes[J]. Journal of Structural Geology, 39: 180-198.
[30] SUN ZHEN, XU ZIYING, SUN LONGTAO, et al, 2014. The mechanism of post-rift fault activities in Baiyun sag, Pearl River Mouth basin[J]. Journal of Asian Earth Sciences, 89: 76-87.
[31] WANG JIAHAO, PANG XIONG, TANG DAQING, et al, 2013. Transtensional tectonism and its effects on the distribution of sandbodies in the Paleogene Baiyun Sag, Pearl River Mouth Basin, China[J]. Marine Geophysical Research, 34(3-4): 195-207.
[32] WERNICKE B, AXEN G J, 1988. On the role of isostasy in the evolution of normal fault systems[J]. Geology, 16(9): 848-851.
[33] ZHENG YADONG, WANG TAO, MA MINGBO, et al, 2004. Maximum effective moment criterion and the origin of low-angle normal faults[J]. Journal of Structural Geology, 26(2): 271-285.
文章导航

/