海洋生物学

秋季南海东北部表层水体固氮及其对初级生产力贡献*

  • 刘甲星 ,
  • 周林滨 ,
  • 李刚 ,
  • 谭烨辉 ,
  • 刘华健 ,
  • 赵春宇 ,
  • 柯志新 ,
  • 李佳俊 ,
  • 姜歆
展开
  • 1. 中国科学院南海海洋研究所 中国科学院热带海洋生物资源与生态重点实验室, 广东 广州 510301; 2. 中国科学院南海海洋研究所 广东省应用海洋生物学重点实验室, 广东 广州 510301;; 3. 中国科学院大学, 北京 100049
刘甲星(1986—), 男, 河南省南阳市人, 博士研究生, 主要研究方向为海洋生态学。E-mail: ljx2ljx@163.com

收稿日期: 2015-10-22

  网络出版日期: 2016-09-22

基金资助

基金项目:国家自然科学基金项目 (41130855、41276162); 中国科学院战略先导专项 (XDA11020200); 公益性行业(农业)科研专项 (201403008); 科技基础性工作专项项目 (2012FY112400、2013FY111200); 广东省科技计划项目 (2014B030301064)

Nitrogen fixation and its contribution of nitrogen to primary production in the surface waters of the northeastern South China Sea during October 2014

  • LIU Jiaxing ,
  • ZHOU Linbin ,
  • LI Gang ,
  • TAN Yehui ,
  • LIU Huajian ,
  • ZHAO Chunyu ,
  • KE Zhixin ,
  • LI Jiajun ,
  • JIANG Xin
Expand
  • 1. Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;; 2. Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;; 3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-10-22

  Online published: 2016-09-22

Supported by

Foundation item: National Science Foundation of China (41130855 and 41276162); Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11020200); Special Fund for Agro-scientific Research in the Public Interest (201403008); National Project of Basic Sciences and Technology of China (2012FY112400 and 2013FY111200) and Science and Technology Planning Project of Guangdong Province (2014B030301064)

摘要

2014年10月在南海东北部利用15N和14C示踪法实测了28个站位表层固氮速率和初级生产力, 结合温度、盐度、营养盐和叶绿素a(Ch a)分析了南海东北部表层水体生物固氮及其对初级生产力的贡献。结果表明, 受珠江冲淡水影响最明显的站位(A1)肉眼可见大量丝状束毛藻(Trichodesmium), 其固氮速率达3475nmolN·m-3·h-1, 是其他站位固氮速率的1~3个数量级之多; 其他站位表层固氮速率在4~213nmolN·m-3·h-1之间, 平均固氮速率为77±54nmolN·m-3·h-1(n = 27), 固氮速率最低的站位出现在受中国沿岸流影响的台湾浅滩及其邻近海域。近岸(水深小于100m)站位表层固氮速率与温度显著正相关(R = 0.68, n = 11, p < 0.05), 相对高温、高磷和低硝酸盐可能是珠江冲淡水影响站位出现高固氮速率的原因, 低温低盐则可能是台湾浅滩及其邻近近岸区域出现低固氮速率的原因。初级生产力(14.19~0.17 mgC·m-3·h-1)从近岸区域到外海逐渐降低, 平均为0.61±0.45 mgC·m-3·h-1, 最高站位出现在台湾浅滩, 最低站位出现在深海区。固氮作用对初级生产所需氮的贡献率(0.08%~9.30%, 平均3.90%±3.10%)从近岸到外海逐渐增加, 表层水温高于26℃时, 固氮对初级生产的氮贡献显著增加。以上结果表明, 秋季南海东北部固氮和初级生产受珠江冲淡水和沿岸流等物理过程调控。

本文引用格式

刘甲星 , 周林滨 , 李刚 , 谭烨辉 , 刘华健 , 赵春宇 , 柯志新 , 李佳俊 , 姜歆 . 秋季南海东北部表层水体固氮及其对初级生产力贡献*[J]. 热带海洋学报, 2016 , 35(5) : 38 -47 . DOI: 10.11978/2015130

Abstract

Biological N2 fixation rate and primary productivity in surface seawater were measured using 15N and 14C tracer assays, respectively, at 28 stations in the northeastern South China Sea during October 2014. Combined with variables including temperature and salinity, dissolved nutrients and chlorophyll a, the spatial distribution of N2 fixation rate, and the nitrogen contribution of N2 fixation to primary production were discussed. Our results showed that the highest rate (3475 nmolN·m-3·h-1) was observed at a Pearl River plume-affected station, where substantial filamentous Trichodesmium colonies apparent to naked eyes occurred. The highest rate was about two or three orders of magnitude higher than those observed at other stations, where N2 fixation rates ranged from 4 to 213 nmolN·m-3·h-1 with an average of 77±54 nmolN·m-3·h-1 (n=27) were detected. The lowest N2 fixation rate was observed in the Taiwan Bank and its adjacent seawaters influenced by the China Coastal Current. There was a significant negative correlation between N2 fixation rate and surface seawater temperature in the inshore waters (bottom depth <100 m; R=0.68, p<0.05). Higher seawater temperature, higher phosphate concentration and lower nitrate plus nitrite concentration may contribute to the higher N2 fixation rate at the stations influenced by the Pearl River plume, while lower seawater temperature and salinity may result in the lower N2 fixation rate in the Taiwan Bank and its adjacent inshore seawaters influenced by the China Coastal Current. The primary productivity (14.19-0.17 mgC·m-3·h-1) decreased from the inshore area to the open waters. N2 fixation could meet 0.08% to 9.30% (3.90%±3.10% on average, n=28) of the nitrogen demand by primary production and the contribution percentage increased from the inshore area toward the open waters. In addition, the contribution percentage significantly increased when the surface temperature was higher than 26℃. Our results indicated that nitrogen fixation and primary production could be regulated by physical processes such as the Pearl River plume and China Coastal Current in the northeastern South China Sea in autumn.

参考文献

1 柴扉, 薛惠洁, 侍茂崇. 2001. 南海升降流区域分布及形成机制分析[G]//中国海洋学文集——南海海流数值计算及中尺度特征研究. 北京: 海洋出版社: 117-128.
2 李涛, 刘胜, 黄良民, 等, 2008. 大亚湾红海束毛藻赤潮生消过程研究[J]. 海洋环境科学, 27(3): 224-227. LI TAO, LIU SHENG, HUANG LIANGMIN, et al, 2008. Studies on a Trichodesmium erythraeum red tide in Daya Bay[J]. Marine Environmental Science, 27(3): 224-227 (in Chinese).
3 林峰, 陈敏, 杨伟锋, 等, 2013. 夏季台湾海峡南部海域上层水体的生物固氮作用[J]. 生态学报, 33(19): 6354-6362. LIN FENG, CHEN MIN, YANG WEIFENG, et al, 2013. Biological nitrogen fixation in the upper water column in the south Taiwan Strait during summer 2011[J]. Acta Ecologica Sinica, 33(19): 6354-6362 (in Chinese).
4 林峰, 2014. 中国边缘海生物固氮速率的时空分布及其影响因素[D]. 厦门: 厦门大学: 1-194. LIN FENG, 2014. Spatial and temporal variations of biological N 2 fixation rate and its controlling factors in the China marginal seas[D]. Xiamen: Xiamen University: 1-194 (in Chinese).
5 吕娥, 2007. 中国边缘海海洋固氮作用的研究—乙炔还原法的应用[D]. 厦门: 厦门大学: 1-89. LÜ E, 2007. Marine nitrogen fixation in china marginal seas based upon acetylene reduction method[D]. Xiamen: Xiamen University: 1-89 (in Chinese).
6 张润, 2010. 中国边缘海生物固氮作用的研究[D]. 厦门: 厦门大学: 1-220. ZHANG RUN, 2010. Biological N 2 fixation in the China marginal seas[D]. Xiamen: Xiamen University: 1-220 (in Chinese).
7 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2008. GB/T 12763.6-2007 海洋调查规范 第4部分: 海水化学要素调查[S]. 北京: 中国标准出版社: 16-23.
8 BREITBARTH E, OSCHLIES A, LAROCHE J, 2007. Physiological constraints on the global distribution of Trichodesmium - effect of temperature on diazotrophy[J]. Biogeosciences, 4(1): 53-61.
9 CAPONE D G, ZEHR J P, PAERL H W, et al, 1997. Trichodesmium , a globally significant marine cyanobacterium[J]. Science, 276(5316): 1221-1229.
10 CARPENTER E J, CAPONE D G, 1992. Nitrogen fixation in Trichodesmium blooms[M]// CARPENTER E J, CAPONE D G, RUETER J G. Marine pelagic Cyanobacteria: Trichodesmium and other diazotrophs. Netherlands: Springer: 211-217.
11 FU FEIXUE, BELL P R F. 2003. Factors affecting N 2 fixation by the cyanobacterium Trichodesmium sp. GBR-TRLI101[J]. FEMS Microbiology Ecology, 45(2): 203-209.
12 GALLOWAY J N, DENTENER F J, CAPONE D G, et al, 2004. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 70(2): 153-226.
13 GROSSE J, BOMBAR D, HAI N D, et al, 2010. The Mekong River plume fuels nitrogen fixation and determines phytoplankton species distribution in the South China Sea during low and high discharge season[J]. Limnology and Oceanography, 55(4): 1668-1680.
14 GROΒKOPF T, MOHR W, BAUSTIAN T, et al, 2012. Doubling of marine dinitrogen-fixation rates based on direct measurements[J]. Nature, 488(7411): 361-364.
15 KARL D, MICHAELS A, BERGMAN B, et al, 2002. Dinitrogen fixation in the world's oceans[J]. Biogeochemistry, 57(1): 47-98.
16 KNAPP A N, DEKAEZEMACKER J, BONNET S, et al, 2012. Sensitivity of Trichodesmium erythraeum and Crocosphaera watsonii abundance and N 2 fixation rates to varying NO 3 - and PO 4 3- concentrations in batch cultures[J]. Aquatic Microbial Ecology, 66(3): 223-236.
17 KONG LIANGLIANG, JING HONGMEI, KATAOKA T, et al, 2011. Phylogenetic diversity and spatio-temporal distribution of nitrogenase genes ( nifH ) in the northern South China Sea[J]. Aquatic Microbial Ecology, 65(1): 15-27.
18 LEE CHEN YUH-LING, 2005. Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 52(2): 319-340.
19 LEE CHEN YUH-LING, CHEN HOUNG-YUNG, 2006. Seasonal dynamics of primary and new production in the northern South China Sea: the significance of river discharge and nutrient advection[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 53(6): 971-986.
20 LEE CHEN YUH-LING, CHEN HOUNG-YUNG, TUO SING-HOW, et al, 2008. Seasonal dynamics of new production from Trichodesmium N 2 fixation and nitrate uptake in the upstream Kuroshio and South China Sea basin[J]. Limnology and Oceanography, 53(5): 1705-1721.
21 LEE CHEN YUH-LING, CHEN HOUNG-YUNG, LIN YEN-HUEI, et al, 2014. The relative contributions of unicellular and filamentous diazotrophs to N 2 fixation in the South China Sea and the upstream Kuroshio[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 85: 56-71.
22 MCCARTHY J J, CARPENTER E J, 1979. Oscillatoria ( Trichodesmium ) thiebautii (Cyanophyta) in the central north Atlantic Ocean[J]. Journal of Phycology, 15(1): 75-82.
23 MOISANDER P H, BEINART R A, VOSS M, et al, 2008. Diversity and abundance of diazotrophic microorganisms in the South China Sea during intermonsoon[J]. The ISME Journal, 2(9): 954-967.
24 MOISANDER P H, BEINART R A, HEWSON I, et al, 2010. Unicellular cyanobacterial distributions broaden the oceanic N 2 fixation domain[J]. Science, 327(5972): 1512-1514.
25 MONTOYA J P, VOSS M, KÄHLER P, et al, 1996. A simple, high-precision, high-sensitivity tracer assay for N 2 fixation[J]. Applied and Environmental Microbiology, 62(3): 986-993.
26 MULHOLLAND M R, OHKI K, CAPONE D G, 1999. Nitrogen utilization and metabolism relative to patterns of N 2 fixation in cultures of Trichodesmium NIBB1067[J]. Journal of Phycology, 35(5): 977-988.
27 MULHOLLAND M R, FLOGE S, CARPENTER E J, et al, 2002. Phosphorus dynamics in cultures and natural populations of Trichodesmium spp.[J]. Marine Ecology-Progress Series, 239: 45-55.
28 ORCHARD E D, AMMERMAN J W, LOMAS M W, et al, 2010. Dissolved inorganic and organic phosphorus uptake in Trichodesmium and the microbial community: the importance of phosphorus ester in the Sargasso Sea[J]. Limnology and Oceanography, 55(3): 1390-1399.
29 PARSONS T R, MAITA Y, LALLI C M, 1984. A manual of chemical and biological methods for seawater analysis. Oxford: Pergamon Press: 475-490.
30 PAYTAN A, MCLAUGHLIN K, 2007. The oceanic phosphorus cycle[J]. Chemical Reviews, 107(2): 563-576.
31 SOHM J A, HILTON J A, NOBLE A E, et al, 2011a. Nitrogen fixation in the South Atlantic Gyre and the Benguela Upwelling System[J]. Geophysical Research Letters, 38(16): L16608.
32 SOHM J A, WEBB E A, CAPONE D G, 2011b. Emerging patterns of marine nitrogen fixation[J]. Nature Reviews Microbiology, 9(7): 499-508.
33 STAL L J, 2009. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature?[J]. Environmental Microbiology, 11(7): 1632-1645.
34 SUBRAMANIAM A, YAGER P L, CARPENTER E J, et al, 2008. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(30): 10460-10465.
35 SUBRAMANIAM A, MAHAFFEY C, JOHNS W, et al, 2013. Equatorial upwelling enhances nitrogen fixation in the Atlantic Ocean[J]. Geophysical Research Letters, 40(9): 1766-1771.
36 VOSS M, BOMBAR D, LOICK N, et al, 2006. Riverine influence on nitrogen fixation in the upwelling region off Vietnam, South China Sea[J]. Geophysical Research Letters, 33(7): L07604.
37 WANG JOE, CHERN CHINGSHENG, 1989. On cold water intrusion in the eastern Taiwan Strait during the cold season[J]. Acta Oceanographica Taiwanica, 22: 43-67.
38 WARD B A, DUTKIEWICZ S, MOORE C M, et al, 2013. Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation[J]. Limnology and Oceanography, 58(6): 2059-2075.
39 WU JINGFENG, CHUNG SHI-WEI, WEN LIANG-SAW, et al, 2003. Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea[J]. Global Biogeochemical Cycles, 17(1): 8-1-8-10.
40 XU JIE, YIN KEDONG, HE LEI, et al, 2008. Phosphorus limitation in the northern South China Sea during late summer: Influence of the Pearl River[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 55(10): 1330-1342.
41 ZEHR J P, 2011. Nitrogen fixation by marine cyanobacteria[J]. Trends in Microbiology, 19(4): 162-173.
42 ZHANG RUN, CHEN MIN, CAO JIANPING, et al, 2012. Nitrogen fixation in the East China Sea and southern Yellow Sea during summer 2006[J]. Marine Ecology Progress Series, 447: 77-86.
43 ZHANG RUN, CHEN MIN, YANG QING, et al, 2015. Physical-biological coupling of N 2 fixation in the northwestern South China Sea coastal upwelling during summer[J]. Limnology and Oceanography, 60(4): 1411-1425.
文章导航

/