海洋水文学

南海东沙海区冬季跨陆坡运动的动力诊断分析

  • 黄孝荣 ,
  • 王强 ,
  • 周伟东 ,
  • 周生启
展开
  • 1. 中国科学院南海海洋研究所, 热带海洋环境国家重点实验室, 广东 广州 510301;
    2. 中国科学院大学, 北京 100049
作者简介:黄孝荣(1990-), 男, 福建省福州市人, 硕士研究生, 主要从事海洋数值模拟研究。E-mail: xrhuang@scsio.ac.cn

收稿日期: 2016-01-18

  修回日期: 2016-05-18

  网络出版日期: 2016-12-15

基金资助

国家自然科学基金项目(41349907、41376026、41406038、41430968); 中国科学院战略性先导科技专项项目(A类) (XDA11030302)

A study of the cross-shelf flow around Dongsha Island in the South China Sea in winter using a diagnostic model

  • HUANG Xiaorong ,
  • WANG Qiang ,
  • ZHOU Weidong ,
  • ZHOU Shengqi
Expand
  • 1. State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences), Guangzhou 510301, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;

Received date: 2016-01-18

  Revised date: 2016-05-18

  Online published: 2016-12-15

Supported by

National Natural Science Foundation of China (41349907、41376026、41406038、41430968); The Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11030302)

摘要

基于普林斯顿海洋模式(POM), 利用全球海洋温盐集(WOA13)气候态温盐数据对南海环流进行诊断计算, 分析东沙海区冬季气候态跨陆坡运动特征。诊断结果表明: 跨陆坡运动的水平和垂向断面分布, 反映出该海区跨陆坡运动存在反对称结构, 即东沙岛以东向陆架方向运动、以西向外洋方向运动。根据正压涡度平衡方程逐项分析, 探讨了东沙海区跨陆坡运动的动力机制, 研究表明: 地形与斜压联合效应项(joint effect of baroclinicity and bottom relief, JEBAR)和地转位势涡度平流项(advection of the geostrophic potential vorticity, APV)主导了涡度平衡, 平流项和扩散项作用次之, 且JEBAR、APV及平流扩散各项在东沙岛东西两侧均表现为正负号相反分布; 相比而言, 海表风应力项和海底摩擦力项的影响为小量。东沙海区密度场相对于地形的不均匀分布, 使得东沙以东JEBAR分布为正、以西JEBAR分布为负, 这种分布是导致反对称的跨陆坡运动发生的主要内在机制, 且东沙岛地形和不均匀密度场分布是这种动力机制得以维持的主要原因。

本文引用格式

黄孝荣 , 王强 , 周伟东 , 周生启 . 南海东沙海区冬季跨陆坡运动的动力诊断分析[J]. 热带海洋学报, 2016 , 35(6) : 1 -9 . DOI: 10.11978/2016009

Abstract

This paper focuses on the cross-shelf flow around Dongsha Island in the South China Sea. Based on the diagnostic model of Princeton Ocean Model (POM) we analyzed the climatologic character of the ocean circulation around Dongsha Island using World Ocean Atlas 2013 (WOA13) climatological temperature and salinity data in winter. We found that an antisymmetric structure exists in the cross-shelf flow around Dongsha Island by examining the horizontal and vertical velocity distributions of cross-shelf flow. In addition, analyses of the barotropic vorticity balance showed that there are five terms related to the cross-shelf flow. The joint effect of baroclinicity and bottom relief (JEBAR) term and the advection of geostrophic potential vorticity (APV) term play dominated roles in the vorticity balance, and the advection and diffusion terms are secondary. The influences of sea surface wind stress and sea floor friction terms are minor. Moreover, the JEBAR, APV, advection, and diffusion terms indicate similar antisymmetric distributions around Dongsha Island. The uneven distribution of sea water density relative to the local topography causes the density gradient along isobaths. Therefore, the JEBAR term shows positive and negative at the east and west of Dongsha Island, respectively, which might be responsible for the generation of the cross-shelf flow. Topography of Dongsha Island and uneven distribution of sea water density are the primary causes that maintain these dynamic processes.

参考文献

[1] 董丹鹏, 周伟东, 杨阳, 等, 2008. 对南海主要出流通道的诊断及讨论[J]. 热带海洋学报, 27(6): 1–5. DONG DANPENG, ZHOU WEIDONG, YANG YANG, et al, 2008. Diagnostic calculations and discussions on main outflow passage of South China Sea[J]. Journal of Tropical Oceanography, 27(6): 1–5 (in Chinese).
[2] 宏波, 王东晓, 2006. 南海北部冬季逆风流的动力诊断[J]. 科学通报, 51(S3): 9–14. HONG BO, WANG DONGXIAO, 2006. Diagnostic analysis on the northern South China Sea winter counter-wind current[J]. Chinese Science Bulletin, 51(2): 9–14 (in Chinese).
[3] 苏纪兰, 2006. 南海环流动力机制研究综述[J]. 海洋学报, 27(6): 1–8. SU JILAN, 2006. Overview of the South China Sea circulation and its dynamics[J]. Acta Oceanologica Sinica, 27(6): 1–8 (in Chinese).
[4] 魏泽勋, 乔方利, 方国洪, 等, 2004. 全球大洋环流诊断模式研究——流场及流函数[J]. 海洋科学进展, 22(1): 1–15. WEI ZEXUN, QIAN FANGLI, FANG GUOHONG, et al, 2004. Diagnostic study of the world ocean circulation ? Current field and stream function[J]. Advances in Marine Science, 22(1): 1–15 (in Chinese).
[5] BLUMBERG A F, MELLOR G L, 1987. A description of a three-dimensional coastal ocean circulation model[M]// HEAPS N S. Three-dimensional coastal ocean models. Washington, D C: American Geophysical Union: 1–16.
[6] COMBES V, DI LORENZO E, CURCHITSER E, 2009. Interannual and decadal variations in cross-shelf transport in the Gulf of Alaska[J]. Journal of Physical Oceanography, 39(4): 1050–1059.
[7] CUDABACK C N, LARGIER J L, 2001. The cross-shelf structure of wind- and buoyancy-driven circulation over the North Carolina inner shelf[J]. Continental Shelf Research, 21(15): 1649–1668.
[8] DEVER E P, 1997. Wind-forced cross-shelf circulation on the northern California shelf[J]. Journal of Physical Oceanography, 27(8): 1566–1580.
[9] DINNIMAN M S, KLINCK J M, 2004. A model study of circulation and cross-shelf exchange on the west Antarctic Peninsula continental shelf[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 51(17/19): 2003–2022.
[10] EZER T, MELLOR G L, 1994. Diagnostic and prognostic calculations of the North Atlantic circulation and sea level using a sigma coordinate ocean model[J]. Journal of Geophysical Research, 99(C7): 14159–14171.
[11] FANG GUOHONG, FANG WENDONG, FANG YUE, et al, 1998. A survey of studies on the South China Sea upper ocean circulation[J]. Acta Oceanographica Taiwanica, 37(1): 1–16.
[12] FEWINGS M, LENTZ S J, FREDERICKS J, 2008. Observations of cross-shelf flow driven by cross-shelf winds on the inner continental shelf[J]. Journal of Physical Oceanography, 38(11): 2358–2378.
[13] GIESE B S, RAY S, 2011. El Ni?o variability in simple ocean data assimilation (SODA), 1871–2008[J]. Journal of Geophysical Research: Oceans, 116(C2): C02024.
[14] HE YINHUI, CAI SHUQUN, WANG DONGXIAO, et al, 2015. A model study of Luzon cold eddies in the northern South China Sea[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 97: 107–123.
[15] KANAMITSU M, EBISUZAKI W, WOOLLEN J, et al, 2002. NCEP-DOE AMIP-Ⅱ reanalysis (R-2)[J]. Bulletin of the American Meteorological Society, 83(11): 1631–1643.
[16] LEVITUS S, ANTONOV J I, BOYER T P, et al, 2000. Warming of the world ocean[J]. Science, 287(5461): 2225–2229.
[17] LEVITUS S, BOYER T P, 1994. World ocean atlas 1994. Volume 4. Temperature[R]//LEVITUS S, BOYER T P. National environ?mental satellite, data, and information service. Washington, DC: NESDIS-4.
[18] LIAO GUANGHONG, YUAN YAOCHU, XU XIAOHUA, 2008. Three dimensional diagnostic study of the circulation in the South China Sea during winter 1998[J]. Journal of Oceanography, 64(5): 803–814.
[19] LIU YANGGANG, WEISBERG R H, 2005. Momentum balance diagnoses for the West Florida Shelf[J]. Continental Shelf Research, 25(17): 2054–2074.
[20] LOCARNINI R A, MISHONOV A V, ANTONOV J I, et al, 2013. World ocean atlas 2013, volume 1: Temperature[M]// LEVITUS S, MISHONOV A. World ocean atlas 2013. Silver Spring: NOAA Atlas NESDIS: 73, 40.
[21] MA B B, LIEN R C, KO D S, 2013. The variability of internal tides in the Northern South China Sea[J]. Journal of Oceanography, 69(5): 619–630.
[22] MELLOR G L, YAMADA T, 1982. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 20(4): 851–875.
[23] MELLOR G L, 1998. Users guide for a three dimensional, primitive equation, numerical ocean model[M]. Princeton, NJ: Princeton University.
[24] QU TANGDONG, KIM Y Y, YAREMCHUK M, et al, 2004. Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea?[J]. Journal of Climate, 17(18): 3644–3657.
[25] RICCIARDULLI L, WENTZ F, 2011. Reprocessed QuikSCAT (V04) wind vectors with Ku-2011 geophysical model function[J]. Remote Sensing Systems Technical Report, 43011.
[26] SALLéE J B, SPEER K, MORROW R, 2008. Response of the Antarctic Circumpolar Current to atmospheric variability[J]. Journal of Climate, 21(12): 3020–3039.
[27] SHAW P T, CHAO S Y, LIU K K, et al, 1996. Winter upwelling off Luzon in the northeastern South China Sea[J]. Journal of Geophysical Research: Oceans, 101(C7): 16435–16448.
[28] WANG BIN, An S I, 2001. Why the properties of El Ni?o changed during the late 1970s[J]. Geophysical Research Letters, 28(19): 3709–3712.
[29] WANG DONGXIAO, HONG BO, GAN JIANPING, et al, 2010. Numerical investigation on propulsion of the counter-wind current in the northern South China Sea in winter[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 57(10): 1206–1221.
[30] WANG DONGXIAO, WANG QIANG, ZHOU WEIDONG, et al, 2013. An analysis of the current deflection around Dongsha Islands in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 118(1): 490–501.
[31] WANG QIANG, WANG YINXIA, BO HONG, et al, 2011. Different roles of Ekman pumping in the west and east segments of the South China Sea warm current[J]. Acta Oceanologica Sinica, 30(3): 1–13.
[32] WEI ZEXUN, CHOI B H, FANG GUOHONG, 2000. Water, heat and salt transports from diagnostic world ocean and north pacific circulation models[J]. La mer, 38: 211–218.
[33] XU JINGTAO, LOWE R J, IVEY G N, et al, 2015. Observations of the shelf circulation dynamics along Ningaloo Reef, Western Australia during the austral spring and summer[J]. Continental Shelf Research, 95: 54–73.
[34] YUAN YAOCHU, SU JILAN, XIA SANGYUN, 1986. A diagnostic model of summer circulation on the northwest shelf of the East China Sea[J]. Progress in Oceanography, 17(3/4): 163–176.
[35] YUAN YAOCHU, LIAO GUANGHONG, XU XIAOHUA, 2007. Three dimensional diagnostic modeling study of the South China Sea circulation before onset of summer monsoon in 1998[J]. Journal of Oceanography, 63(1): 77–100.
[36] YUAN YAOCHU, LIAO GUANGHONG, YANG CHENGHAO, 2008. The Kuroshio near the Luzon Strait and circulation in the northern South China Sea during August and September 1994[J]. Journal of Oceanography, 64(5): 777–788.
[37] YUAN YAOCHU, LIAO GUANGHONG, YANG CHENGHAO, et al, 2014. Summer Kuroshio Intrusion through the Luzon Strait confirmed from observations and a diagnostic model in summer 2009[J]. Progress in Oceanography, 121: 44–59.
[38] ZHOU WEIDONG, YANG YANG, DONG DANPENG, 2008. The calculation of the circulation in South China Sea by a diagnostic model[J]. Acta Oceanologica Sinica, 27(S1): 31–45.
文章导航

/