海洋水文学

高频地波雷达观测资料对南海北部海流的数值同化实验*

  • 朱宇航 ,
  • 曾学智 ,
  • 彭世球
展开
  • 1. 热带海洋环境国家重点实验室(中国科学院南海海洋研究所), 广东 广州 510301;
    2. 中国科学院大学, 北京 100049;
    3. 国家海洋局南海预报中心, 广东 广州 510310;
作者简介:朱宇航(1990-),男,广东省汕尾市人,硕士研究生,从事资料同化、数值模式研究。E-mail: yuzhu@scsio.ac.cn

收稿日期: 2016-01-11

  修回日期: 2016-05-27

  网络出版日期: 2016-12-15

Assimilation experiments of high frequency ground wave radar current in the northern coast of the South China Sea

  • ZHU Yuhang ,
  • ZENG Xuezhi ,
  • PENG Shiqiu
Expand
  • 1. State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences), Guangzhou 510301, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. South China Sea Marine Prediction Center, State Oceanic Administration, Guangzhou 510310, China;

Received date: 2016-01-11

  Revised date: 2016-05-27

  Online published: 2016-12-15

Supported by

*感谢南海海洋研究所的高性能计算中心为本文数值模拟提供的技术支持。

摘要

文章利用基于区域海洋模式(ROMS)的三维变分同化系统, 将双站(博贺站和斗龙站)高频地波雷达的表层海流观测数据同化进模式中, 并通过敏感性试验研究了观测覆盖率对同化效果的影响以及同化间隔对同化效果持续性的影响。结果表明, 同化高频地波雷达表层海流观测数据能显著改善模式对表层海流的模拟。当观测覆盖率大于40%时, 不同的观测覆盖率的同化效果几乎无差别, 这表明模式背景误差协方差能够很好地弥补高频地波雷达在空间上的缺测信息。试验结果还表明同化效果的持续性受到同化间隔的影响: 过频繁的同化会造成模式初始场动力不平衡加剧, 使得同化效果的持续性变差, 而过大的同化间隔则会使同化效果在下一次同化到来前消失。当同化间隔取6h或12h时, 同化效果的持续性达到最优。同化对模式预报的改善持续的时长为4~6h。

本文引用格式

朱宇航 , 曾学智 , 彭世球 . 高频地波雷达观测资料对南海北部海流的数值同化实验*[J]. 热带海洋学报, 2016 , 35(6) : 10 -18 . DOI: 10.11978/2016004

Abstract

Based on the Regional Oceanic Modeling System (ROMS) and multi-scale three-dimensional variational data assimilation scheme, the sea surface currents (SSCs) observed by double HF Radar stations Bohe and Doulong are assimilated into the ocean model. The effect of assimilation using different observation coverages and the sustainability of assimilation effect using different assimilation intervals are investigated through sensitivity experiments. The results show that the assimilation of HF Radar SSC significantly improves the SSC simulation. The experiments show no significant difference under different coverages of SSC observations when the coverage is over 40%, which indicates the background error covariance is able to make up for the missing data of the HF Radar SSC in space. The results also show that the sustainability of assimilation effect is influenced by the interval of assimilation: assimilating data too often will exacerbate the dynamic imbalance of the initial field, which makes the sustainability of the improvement worse, while a too large interval of assimilation will lose the assimilation effect before the next assimilation starts. The sustainability of the improvement in assisimilation achieves the best optimization when the assimilation interval is 6 or 12 hours. The sustainability of the improvement of model forecast after the assimilation lasts for 4 to 6 hours.

参考文献

[1] 郭佩芳, 2006. 地波雷达遥感资料的反演及应用研究[D]. 北京: 中国科学院研究生院: 89–106.
[2] 毛华斌, 陈举, 邱春华, 等, 2011. 单点高频地波雷达资料估算潮能耗散的方法[J]. 热带海洋学报, 30(6): 18–23. MAO HUABIN, CHEN JU, QIU CHUNHUA, et al, 2011. An approach to estimate tidal dissipation from single-point high-frequency ground wave radar data[J]. Journal of Tropical Oceanography, 30(6): 18–23 (in Chinese).
[3] 薛惠洁, 柴扉, 王丽娅, 等, 2001. 珠江口及其邻近海域环流模式结构[M]//薛惠洁, 柴扉, 许建平. 中国海洋学文集, 13. 北京: 海洋出版社: 138?151. XUE HUIJIE, CHAI FEI, WANG LIYA, et al, 2001. Zhujiang River Estuarine circulation model[M]//XUE HUIJIE, CHAI FEI, XU JIANPING. Oceanography in China, 13. Beijing: Ocean Press: 138–151 (in Chinese).
[4] 周浩, 文必洋, 2002. 高频地波雷达生成海洋表面矢量流图[J]. 海洋与湖沼, 33(1): 1–7. ZHOU HAO, WEN BIYANG, 2002. Mapping ocean surface vector currents by dual HF ground wave radars[J]. Oceanologia et Limnologia Sinica, 33(1): 1–7 (in Chinese).
[5] 朱大勇, 邵浩, 李炎, 等, 2007. OSMAR高频地波雷达福建示范系统径向流数据质量分析[J]. 台湾海峡, 26(1): 7–16. ZHU DAYONG, SHAO HAO, LI YAN, et al, 2007. Quality analyses of radial currents measured by a demonstration system of OSMAR HF radar in Fujian Province[J]. Journal of Oceanography in Taiwan Strait, 26(1): 7–16 (in Chinese).
[6] 朱大勇, 李炎, 郭小钢, 等, 2013. 高频地波雷达海流验证研究述评[J]. 热带海洋学报, 32(4): 1–7. ZHU DAYONG, LI YAN, GUO XIAOGANG, et al, 2013. Review of studies on the validation of surface currents measured by high-frequency radar[J]. Journal of Tropical Oceanography, 32(4): 1–7 (in Chinese).
[7] AMANTE C, EAKINS B W, 2009. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis[M]//NCD CENTER. NOAA technical memorandum NESDIS NGDC-24. Boulder: Department of Commerce: 1–19.
[8] ARBIC B K, SCOTT R B, CHELTON D B, et al, 2012. Effects of stencil width on surface ocean geostrophic velocity and vorticity estimation from gridded satellite altimeter data[J]. Journal of Geophysical Research, 117: C03029.
[9] BARTH A, ALVERA-AZCáRATE A, WEISBERG R H, 2008. Assimilation of high-frequency radar currents in a nested model of the West Florida Shelf[J]. Journal of Geophysical Research, 113: C08033.
[10] BERRISFORD P, DEE D, POLI P, et al, 2011. The ERA-interim archive, version 2.0[R]. Reading: ECMWF: 23.
[11] BREIVIK ?, S?TRA ?, 2001. Real time assimilation of HF radar currents into a coastal ocean model[J]. Journal of Marine Systems, 28(3/4): 161–182.
[12] CUMMINGS J A, SMEDSTAD O M, 2013. Variational data assimilation for the global ocean[M]//LEWIS J M, NAVON I M, ZUPANSKI M, et al. Data assimilation for atmospheric, oceanic and hydrologic applications (Vol Ⅱ). Berlin Heidelberg: Springer: 303–343.
[13] HE RUOYING, LIU YONGGANG, WEISBERG R H, 2004. Coastal ocean wind fields gauged against the performance of an ocean circulation model[J]. Geophysical Research Letters, 31: L14303.
[14] LEWIS J K, SHULMAN I, BLUMBERG A F, 1998. Assimilation of Doppler radar current data into numerical ocean models[J]. Continental Shelf Research, 18(5): 541–559.
[15] LI ZHIJIN, CHAO YI, MCWILLIAMS J C, et al, 2008a. A three-dimensional variational data assimilation scheme for the regional ocean modeling system: Implementation and basic experiments[J]. Journal of Geophysical Research, 113: C05002.
[16] LI ZHIJIN, CHAO YI, MCWILLIAMS J C, et al, 2008b. A three-dimensional variational data assimilation scheme for the regional ocean modeling system[J]. Journal of Atmospheric and Oceanic Technology, 25(11): 2074–2090.
[17] LIPA B J, BARRICK D E, 1983. Least-squares methods for the extraction of surface currents from CODAR crossed-loop data: Application at ARSLOE[J]. IEEE Journal of Oceanic Engineering, 8(4): 226–253.
[18] MARMAIN J, MOLCARD A, FORGET P, et al, 2014. Assimilation of HF radar surface currents to optimize forcing in the Northwestern Mediterranean Sea[J]. Nonlinear Processes in Geophysics, 21(3): 659–675.
[19] MENDON?A A M, BONATTI J P, 2009. Experiments with EOF-based perturbation methods and their impact on the CPTEC/INPE ensemble prediction system[J]. Monthly Weather Review, 137(4): 1438–1459.
[20] OKE P R, ALLEN J S, MILLER R N, et al, 2002. Assimilation of surface velocity data into a primitive equation coastal ocean model[J]. Journal of Geophysical Research, 107(C9): 5-1–5-25.
[21] PADUAN J D, ROSENFELD L K, 1996. Remotely sensed surface currents in Monterey Bay from shore-based HF radar (coastal ocean dynamics application radar)[J]. Journal of Geophysical Research, 101(C9): 20669–20686.
[22] PADUAN J D, SHULMAN I, 2004. HF radar data assimilation in the Monterey Bay area[J]. Journal of Geophysical Research, 109: C07S09.
[23] PARRISH D F, Derber J C, 1992. The National Meteorological Center’s spectral statistical-interpolation analysis system[J]. Monthly Weather Review, 120(8): 1747–1763.
[24] PAWLOWICZ R, BEARDSLEY B, LENTZ S, 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers & Geosciences, 28(8): 929–937.
[25] SCOTT R B, FURNIVAL D G, 2012. Assessment of traditional and new eigenfunction bases applied to extrapolation of surface geostrophic current time series to below the surface in an idealized primitive equation simulation[J]. Journal of Physical Oceanography, 42(1): 165–178.
[26] SHCHEPETKIN A F, MCWILLIAMS J C, 2003. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate[J]. Journal of Geophysical Research, 108: 3090.
[27] SHCHEPETKIN A F, MCWILLIAMS J C, 2005. The regional oceanic modeling system (ROMS): A split-explicit, free- surface, topography-following-coordinate oceanic model[J]. Ocean Modelling, 9(4): 347–404.
[28] SHULMAN I, PADUAN J D, 2009. Assimilation of HF radar-derived radials and total currents in the Monterey Bay area[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 56(3/5): 149–160.
[29] TALAGRAND O, 1972. On the damping of high-frequency motions in four-dimensional assimilation of meteorological data[J]. Journal of the Atmospheric Sciences, 29: 1571–1574.
[30] YU P, KURAPOV A L, EGBERT G D, et al, 2012. Variational assimilation of HF radar surface currents in a coastal ocean model off Oregon[J]. Ocean Modelling, 49/50(1/2): 86–104.
[31] ZENG XUEZHI, PENG SHIQIU, LI ZHIJIN, et al, 2014. A reanalysis dataset of the South China Sea[J]. Scientific Data, 1: 140052.
[32] ZHANG Z, KRISHNAMURTI T N, 1999. A perturbation method for hurricane ensemble predictions[J]. Monthly Weather Review, 127(4): 447–469.
文章导航

/