海洋地球物理学

流花碳酸盐岩储层“低频阴影”检测分析*

  • 黄昱丞 ,
  • 王大伟 ,
  • 吴时国 ,
  • 曾驿 ,
  • 王纯
展开
  • 1. 中国石油勘探开发研究院, 北京 100083;
    2. 中国科学院深海科学与工程研究所, 海南 三亚 572000;
    3. 中海石油(中国)有限公司深圳分公司, 广东 广州 510240
作者简介:黄昱丞(1989-), 男, 中国石油勘探开发研究院在读博士生, 主要从事地球物理储层预测方面的研究。E-mail: hyc013148@163.com

收稿日期: 2016-02-26

  修回日期: 2016-06-16

  网络出版日期: 2016-12-15

基金资助

国家自然科学基金项目(41576049); 南海重大计划重点项目(91228208); 中国科学院深海科学与工程研究所知识创新工程领域前沿项目(IDSSE-201403)

“Low frequency shadow” detection and analysis of the carbonate reservoir in Pearl River Mouth Basin

  • HUANG Yucheng ,
  • WANG Dawei ,
  • WU Shiguo ,
  • ZENG Yi ,
  • WANG Chun
Expand
  • 1. Research Institute of Petroleum Exploration &Development, Beijing 100083, China;
    2. Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
    3. Shenzhen Branch of China National Offshore Oil Corporation Ltd., Guangzhou 510240, China

Received date: 2016-02-26

  Revised date: 2016-06-16

  Online published: 2016-12-15

Supported by

National Natural Science Foundation of China (41576049); South China Sea Major Project (91228208); Institute of Deep-Sea Science and Engineering Frontier Project of Knowledge Innovation in Engineering (IDSSE-201403)

摘要

南海北部东沙隆起区广泛发育新生代碳酸盐岩台地, 台地上原地生长的生物礁由于孔隙、裂缝的发育加之上覆泥岩盖层的阻挡, 形成了非常好的油气储层。文章结合测井资料, 利用谱分解方法分析了流花碳酸盐岩台地高孔隙度储层的地震时频特征, 发现在孔隙极为发育的储层顶部地震波能量出现明显衰减, 时频谱上表现为中心频率显著降低; 但在分频剖面上, 除了垮塌溶蚀层段可见低频强能量区外, 未能在储层位置下方检测到表征能量衰减的“低频阴影”现象。研究结果认为: 储层厚度较薄、碳酸盐岩平均速度较高、储层非含气高密度流体(油和水)的存在, 是导致未检测到“低频阴影”的3个主要原因。其中, 较薄的储层和速度较高的碳酸盐岩会引起衰减不足, 而非含气高密度流体会导致顶底阻抗的差异不明显。另外, 薄层的调谐效应使得地层在调谐频率处出现强振幅响应, 这一峰值频率可以用来估计储层厚度。

本文引用格式

黄昱丞 , 王大伟 , 吴时国 , 曾驿 , 王纯 . 流花碳酸盐岩储层“低频阴影”检测分析*[J]. 热带海洋学报, 2016 , 35(6) : 36 -45 . DOI: 10.11978/2016020

Abstract

Carbonate platforms were widely distributed throughout the Dongsha uplift in Cenozoic. The autochthonous reefs grew above the platform have turned into excellent reservoirs due to holes and cracks developed inside and the blocking of overlying mudstone. In this paper, we analyze the time-frequency characteristics of Liuhua carbonate reservoir with high porosity using spectral decomposition, combining log data. The seismic waves encountered significant attenuation passing through the top of the reservoir, where the porosity was good, as the seismic centroid frequency on the time-frequency spectrum dropped rapidly there. However, the expected Low Frequency Shadows below the reservoir are missing except for some energy speckles shown on low frequency profiles. It is inferred that the relatively thin bed of the reservoir, the high interval velocity and the existence of the dense fluid (oil and water) inside the reservoir account for this phenomenon. The first two of the factors mentioned above give rise to inadequate attenuation of seismic waves and energy absorption. And the last one does not bring about a distinct impedance reflector as gas does. Besides, thin bed tuning effect leads to strong reflections of corresponding subsurface structures on the common-frequency section as it is at the tuning frequency, and this peak frequency could be applied to the estimate the reservoir thickness.

参考文献

[1] 陈林, 宋海斌, 2009. 地震信号瞬时频率的估算[J]. 地球物理学报, 52(1): 206–214. CHEN LIN, SONG HAIBIN, 2009. The estimation of instantaneous frequency of seismic signal[J]. Chinese Journal of Geophysics, 52(1): 206–214 (in Chinese).
[2] 陈端新, 吴时国, 施和生, 等, 2012. 珠江口盆地流花碳酸盐台地灰岩坑的地震反射特征及成因探讨[J]. 吉林大学学报 (地球科学版), 42(6): 1935–1943. CHEN DUANXIN, WU SHIGUO, SHI HESHENG, et al, 2012. Seismic characteristics and generations of sinkholes in the Liuhua carbonate platform, Pearl River Mouth Basin[J]. Journal of Jilin University (Earth Science Edition), 42(6): 1935–1943 (in Chinese).
[3] 陈学华, 贺振华, 黄德济, 等, 2009. 时频域油气储层低频阴影检测[J]. 地球物理学报, 52(1): 215–221. CHEN XUEHUA, HE ZHENHUA, HUANG DEJI, et al, 2009. Low frequency shadow detection of gas reservoirs in time-frequency domain[J]. Chinese Journal of Geophysics, 52(1): 215–221 (in Chinese).
[4] 陈学华, 贺振华, 钟文丽, 2011. 低频阴影与储层特征关系的数值模拟[J]. 中国矿业大学学报, 40(4): 584–591. CHEN XUEHUA, HE ZHENHUA, ZHONG WENLI, 2011. Numeric simulation in the relationship between low frequency shadow and reservoir characteristic[J]. Journal of China University of Mining and Technology, 40(4): 584–591 (in Chinese).
[5] 戴春山, 2011. 中国海域含油气盆地群和早期评价技术[M]. 北京: 海洋出版社: 248–253. DAI CHUNSHAN, 2011. Oil and gas bearing basins in China and early stage evaluation technology[M]. Beijing: Ocean Press: 248–253 (in Chinese).
[6] 范嘉松, 2005. 世界碳酸盐岩油气田的储层特征及其成藏的主要控制因素[J]. 地学前缘, 12(3): 23–30. FAN JIASONG, 2005. Characteristics of carbonate reservoirs for oil and gas fields in the world and essential controlling factors for their formation[J]. Earth Science Frontiers, 12(3): 23–30 (in Chinese).
[7] 高静怀, 陈文超, 李幼铭, 等, 2003. 广义S变换与薄互层地震响应分析[J]. 地球物理学报, 46(4): 526–532. GAO JINGHUAI, CHEN WENCHAO, LI YOUMIN, et al, 2003. Generalized S transform and seismic response analysis of thin interbeds[J]. Chinese Journal of Geophysics, 46(4): 526–532 (in Chinese).
[8] 陆基孟, 王永刚, 2009. 地震勘探原理[M]. 东营: 中国石油大学出版社: 356–366. LU JIMENG, WANG YONGGANG, 2009. The principle of seismic exploration[M]. Dongying: Press of the University of Chinese Petroleum: 356–366 (in Chinese).
[9] 汪瑞良, 周小康, 曾驿, 等, 2011. 珠江口盆地东部东沙隆起中新世碳酸盐岩与生物礁地震响应特征及其识别[J]. 石油天然气学报, 33(8): 63–68. WANG RUILIANG, ZHOU XIAOKANG, ZENG YI, et al, 2011. Seismic response characteristics and identification of miocene carbonate rocks in Dongsha uplift of Pearl River-month basin[J]. Journal of Oil and Gas Technology, 33(8): 63–68 (in Chinese).
[10] 张波, 王真理, 周水生, 等, 2010. 谱分解在含气检测中的应用[J]. 地球物理学进展, 25(4): 1360–1364. ZHANG BO, WANG ZHENLI, ZHOU SHUISHENG, et al, 2010. Application of spectral decomposition to gas detection[J]. Progress in Geophysics, 25(4): 1360–1364 (in Chinese).
[11] 张广旭, 2011. 南海北部陆缘碳酸盐台地地球物理特征研究[D]. 青岛: 中国科学院研究生院 (海洋研究所): 1–82. ZHANG GUANGXU, 2011. Geophysical signature and geologic evolution of carbonate platform in the shelf margin of the northern South China Sea[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences: 1–82 (in Chinese).
[12] 张贤达, 2002. 现代信号处理[M]. 2版. 北京: 清华大学出版社: 359. ZHANG XIANDA, 2002. Modern signal processing[M]. 2nd ed. Beijing: Tsinghua University Press: 359 (in Chinese).
[13] 赵中贤, 周蒂, 廖杰, 2009. 珠江口盆地第三纪古地理及沉积演化[J]. 热带海洋学报, 28(6): 52–60. ZHAO ZHONGXIAN, ZHOU DI, LIAO JIE, 2009. Tertiary paleogeography and depositional evolution in the Pearl River Mouth Basin of the northern South China Sea[J]. Journal of Tropical Oceanography, 28(6): 52–60 (in Chinese).
[14] CASTAGNA J P, SUN SHENGJIE, SIEGFRIED R W, 2003. Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons[J]. The Leading Edge, 22(2): 120–127.
[15] CASTAGNA J P, SUN S, 2006. Comparison of spectral decomposition methods[J]. First Break, 24(3): 75–79.
[16] CHABYSHOVA E, GOLOSHUBIN G, 2014. Seismic modeling of low-frequency “shadows” beneath gas reservoirs[J]. Geophysics, 79(6): D417–D423.
[17] CHOPRA S, MARFURT K J, 2005. Seismic attributes ? A historical perspective[J]. Geophysics, 70(5): 3SO–28SO.
[18] CHOPRA S, MARFURT K J, 2008. Emerging and future trends in seismic attributes[J]. The Leading Edge, 27(3): 298–318.
[19] EBROM D, 2004. The low-frequency gas shadow on seismic sections[J]. The Leading Edge, 23(8): 772.
[20] HE ZHENHUA, XIONG XIAOJUN, BIAN LIEN, 2008. Numerical simulation of seismic low-frequency shadows and its application[J]. Applied Geophysics, 5(4): 301–306.
[21] LI YANDONG, ZHENG XIAODONG, ZHANG YAN, 2011. High-frequency anomalies in carbonate reservoir characterization using spectral decomposition[J]. Geophysics, 76(3): 47–57.
[22] LIU JIANLEI, MARFURT K J, 2007. Instantaneous spectral attributes to detect channels[J]. Geophysics, 72(2): 23–31.
[23] MARFURT K J, KIRLIN R L, 2001. Narrow-band spectral analysis and thin-bed tuning[J]. Geophysics, 66(4): 1274–1283.
[24] MASAFERRO J L, BOURNE R, JAUFFRED J C, 2003. 3D visualization of carbonate reservoirs[J]. The Leading Edge, 22(1): 18–25.
[25] PARTYKA G, GRIDLEY J, LOPEZ J, 1999. Interpretational applications of spectral decomposition in reservoir characterization[J]. The Leading Edge, 18(3): 353–360.
[26] SHERIFF R E, 2002. Encyclopedic dictionary of applied geophysics[M]. 4th ed. Tulsa, Oklahoma: Society of Exploration Geophysicists.
[27] SINHA S, ROUTH P S, ANNO P D, et al, 2005. Spectral decomposition of seismic data with continuous-wavelet transform[J]. Geophysics, 70(6): 19–P25.
[28] STOCKWELL R G, MANSINHA L, LOWE R P, 1996. Localization of the complex spectrum: The S transform[J]. IEEE Transactions on Signal Processing, 44(4): 998–1001.
[29] STORY C, PENG P, HEUBECK C, et al, 2000. Liuhua 11–1 Field, South China Sea: A shallow carbonate reservoir developed using ultrahigh-resolution 3-D seismic, inversion, and attribute-based reservoir modeling[J]. The Leading Edge, 19(8): 834–844.
[30] TANER M T, KOEHLER F, SHERIFF R E, 1979. Complex seismic trace analysis[J]. Geophysics, 44(6): 1041–1063.
[31] WHITE R E, 1991. Properties of instantaneous seismic attributes[J]. The Leading Edge, 10(7): 26–32.
[32] WIDESS M B, 1973. How thin is a thin bed?[J]. Geophysics, 38(6): 1176–1180.
[33] ZAMPETTI V, SATTLER U, BRAAKSMA H, 2005. Well log and seismic character of Liuhua 11–1 Field, South China Sea; relationship between diagenesis and seismic reflections[J]. Sedimentary Geology, 175(1/4): 217–236.
文章导航

/