海洋环境保护

深圳西部海域河流入海口沉积物酸可挥发性硫、同步提取重金属分布特征与生物毒性评价

  • 张际标 ,
  • 杨波 ,
  • 陈涛 ,
  • 陈春亮
展开
  • 广东海洋大学海洋资源与环境监测中心, 广东 湛江 524088
作者简介:张际标(1971-), 男, 江西省赣州市人, 副教授, 博士, 从事海洋资源与环境研究。E-mail: zhjbwxy@163.com

收稿日期: 2015-11-10

  修回日期: 2016-05-25

  网络出版日期: 2016-12-15

基金资助

海洋公益性行业科研专项 (201305038-6); 深圳市规划和国土资源委员会海域使用金项目(SZCG2013040968)

Distribution characteristics of acid-volatile sulfide and simultaneously extracted metals in sediments in the western estuary of Shenzhen, and their toxic effects on organisms

  • ZHANG Jibiao ,
  • YANG Bo ,
  • CHEN Tao ,
  • CHEN Chunliang
Expand
  • Monitoring Center for Marine Resources and Environment, Guangdong Ocean University, Zhanjiang 524088, China

Received date: 2015-11-10

  Revised date: 2016-05-25

  Online published: 2016-12-15

Supported by

The National Special Research Fund for Non-Profit Marine Sector (201305038-6); The Sea Using Fund of Urban Planning, Land and Resources Commission of Shenzhen Municipality (SZCG2013040968).

摘要

对深圳西部海域7个河流入海口沉积物中酸可挥发性硫化物(AVS)和同步可提取重金属(SEM)的区域和垂直分布特征进行了研究, 对沉积物重金属的潜在生物毒性进行初步评价。结果表明: 深圳西部海域河流入海口沉积物AVS的含量范围为0.54~24.17μmol·g-1之间, 平均为10.74μmol·g-1, 分布规律为后海河河口>西乡河河口>新圳河河口>大沙河河口>铁岗水库洪排口>福永河河口>深圳河河口; ΣSEM含量范围为5.58~32.18μmol·g-1之间, 平均值为15.63μmol·g-1, 分布规律为铁岗水库洪排口>深圳河河口>福永河河口>新圳河河口>西乡河河口>后海河河口>大沙河河口。ΣSEM垂直分布规律与AVS相似, 都有先增高后降低趋势; 沉积物中AVS与沉积物有机碳(TOC)、粒度以及溶出液pH呈显著性相关, 河口区沉积物有机质含量越高、粒度越大、pH越高越有利于AVS生成; 对沉积物进行重金属生物毒性效应分析, 表层沉积物中(ΣSEM/AVS)、(ΣSEM-AVS)和(ΣSEM-AVS)/foc值(foc为有机碳百分含量)的变化范围分别为0.77~8.93、-5.58~16.85μmol·g-1和-244.30~2071.65μmol·g-1, 而柱状沉积物中(ΣSEM/AVS)、(ΣSEM-AVS)和(ΣSEM-AVS)/foc值的变化范围分别为0.38~8.93、-19.69~36.05μmol·g-1和-1278.27~2931.28μmol·g-1。其中, 福永河河口、铁岗水库洪排口和深圳河河口沉积物重金属表现为高生物毒性效应, 应加强重金属污染监控。

本文引用格式

张际标 , 杨波 , 陈涛 , 陈春亮 . 深圳西部海域河流入海口沉积物酸可挥发性硫、同步提取重金属分布特征与生物毒性评价[J]. 热带海洋学报, 2016 , 35(6) : 89 -101 . DOI: 10.11978/2015135

Abstract

The horizontal and vertical distributions of acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) in the sediment from seven estuaries along the Shenzhen coast were studied. The potential risks of heavy metals to benthic organisms in the sediment were also preliminary evaluated. The concentration of AVS in the surface sediment ranged from 0.54 to 24.17 μmol·g-1 with an average of 10.74 μmol·g-1. The sediment concentration of AVS in the Shenzhen River estuary was the lowest, and that in the Houhai River estuary was the highest. The spatial distribution of AVS was in the order of Houhai River estuary>Xixiang River estuary>Xinzhen River estuary>Dasha River estuary>Tiegang Reservoir estuary>Fuyong River estuary>Shenzhen River estuary. The concentration of ΣSEM was between 5.58 to 32.18 μmol·g-1 with an average of 15.63 μmol·g-1. The concentration of ΣSEM in the Dasha River estuary was the lowest, and that in the Fuyong River estuary was the highest. The spatial distribution of ΣSEM was in the order of Tiegang Reservoir estuary>Shenzhen River estuary> Fuyong River estuary>Xinzhen River estuary>Xixiang River estuary>Houhai River estuary>Dasha River estuary. The spatial distributions of AVS and SEMs were consistent. The vertical diversification of AVS increased at first and then decreased, which was similar to ΣSEM. The TOC (total organic carbon), particle size and pH were significantly correlated with AVS in the sediment. We found that high organic matter content, large particle size and high pH were favorable to the formation of

参考文献

[1] 毕春娟, 陈振楼, 许世远, 等, 2006. 河口近岸水体中颗粒态重金属的潮周期变化[J]. 环境科学, 27(1): 132–136. BI CHUNJUAN, CHEN ZHENLOU, XU SHIYUAN, et al, 2006. Variation of particulate heavy metals in coastal water over the course of tidal cycle in estuary[J]. Environmental Science, 27(1): 132–136 (in Chinese).
[2] 戴纪翠, 高晓薇, 倪晋仁, 等, 2010. 深圳近海海域沉积物重金属污染状况评价[J]. 热带海洋学报, 29(1): 85–90. DAI JICUI, GAO XIAOWEI, NI JINGREN, et al, 2010. Evaluation of heavy-metal pollution in Shenzhen coastal sediments[J]. Journal of Tropical Oceanography, 29(1): 85–90 (in Chinese).
[3] 戴秀丽, 孙成, 2001. 太湖沉积物中重金属污染状况及分布特征探讨[J]. 上海环境科学, 20(2): 71–74. DAI XIULI, SUN CHENG, 2001. The characteristics of heavy mentals distribution and pollution in sediment from Lake Taihu[J]. Shanghai Environmental Sciences, 20(2): 71–74 (in Chinese).
[4] 范成新, 朱育新, 吉志军, 等, 2002. 太湖宜溧河水系沉积物的重金属污染特征[J]. 湖泊科学, 14(3): 235–241. FAN CHENGXIN, ZHU YUXIN, JI ZHIJUN, et al, 2002. Characteristics of the pollution of heavy metals in the sediments of Yilihe River, Taihu Basin[J]. Journal of Lake Sciences, 14(3): 235–241 (in Chinese).
[5] 甘居利, 林钦, 李纯厚, 等, 2008. 珠江口沉积环境中硫化物分布特征与污染评价[J]. 海洋环境科学, 27(2): 149–152. GAN JULI, LIN QIN, LI CHUNHOU, et al, 2008. Distribution characteristic and quality assessment of sulfide in sediments of Pearl River Estuary[J]. Marine Environmental Science, 27(2): 149–152 (in Chinese).
[6] 甘华阳, 梁开, 郑志昌, 2010. 珠江口沉积物的重金属背景值及污染评价分区[J]. 地球与环境, 38(3): 344–350. GAN HUAYANG, LIANG KAI, ZHENG ZHICHANG, 2010. Background values, contamination assessment and zoning of heavy metals in sediments of the Pearl River Estuary[J]. Earth and Environment, 38(3): 344–350 (in Chinese).
[7] 国家质量监督检验检疫总局, 2008a. 海洋调查规范 第8部分: 海洋地质地球物理调查(GB/T 12763.8?2007)[S]. 北京: 中国标准出版社. STATE GENERAL ADMINISTRATION OF THE PEOPLE’S REPUBLIC OF CHINA FOR QUALITY SUPERVISION AND INSPECTION AND QUARANTINE, 2008b. Specifications for oceanographic survey ???Part 8: Marine geology and geophysics survey (GB/T 12763.8?2007) [S]. Beijing: China Standards Press (in Chinese).
[8] 国家质量监督检验检疫总局, 2008b. 海洋监测规范 第5部分: 沉积物分析(GB 17378.5–2007)[S]. 北京: 中国标准出版社. STATE GENERAL ADMINISTRATION OF THE PEOPLE’S REPUBLIC OF CHINA FOR QUALITY SUPERVISION AND INSPECTION AND QUARANTINE, 2008a. The specification for marine monitoring ? Part 5: Sediment analysis (GB 17378.5–2007)[S]. Beijing: China Standards Press (in Chinese).
[9] 国家海洋局908专项办公室, 2006. 海洋化学调查技术规程[M]. 北京: 海洋出版社. THE 908 SPECIAL OFFICE OF STATE OCEAN ADMINISTRATION, 2006. Marine chemical investigation procedures[M]. Beijing: China Ocean Press (in Chinese).
[10] 胡朝晖, 李平, 徐维海, 等, 2008. 深圳蛇口渔港沉积物重金属分布及潜在生态风险评价[J]. 生态环境, 17(6): 2145–2149. HU ZHAOHUI, LI PING, XU WEIHAI, et al, 2008. Distribution and ecological risk assessment of heavy metals in surface sediments from Shekou fishing harbor, Shenzhen, China[J]. Ecology and Environment, 17(6): 2145–2149 (in Chinese).
[11] 胡蕾, 刘素美, 任景玲, 等, 2009. 东海近岸沉积物中酸可挥发性硫化物的分布研究[J]. 海洋环境科学, 28(5): 482–486. HU LEI, LIU SUMEI, REN JINGLING, et al, 2009. Study on distribution of acid volatile sulfide in sediments of coastal zone in East China Sea[J]. Marine Environmental Science, 28(5): 482–486 (in Chinese).
[12] 黄奕龙, 王仰麟, 岳隽, 2005. 深圳市河流沉积物重金属污染特征及评价[J]. 环境污染与防治, 27(9): 711–715. HUANG YILONG, WANG YANGLIN, YUE JUAN, 2005. Pollution characteristics and assessment of heavy metals in river sediments in Shenzhen City[J]. Environment Pollution and Control, 27(9): 711–715 (in Chinese).
[13] 江志华, 马启敏, 王修林, 等, 2005. 渤海湾北部海域沉积物酸可挥发性硫(AVS)的研究[J]. 海洋环境科学, 24(3): 6–8. JIANG ZHIHUA, MA QIMING, WANG XIULIN, et al, 2005. Study on the AVS in surface sediment in the north area of the Bohai Bay[J]. Marine Environmental Science, 24(3): 6–8 (in Chinese).
[14] 梁涛, 陶澍, 林健枝, 等, 1998. 沉积物中酸挥发硫对上覆水中重金属含量的影响[J]. 环境化学, 17(3): 212–217. LIANG TAO, TAO SHU, LIN JIANZHI, et al, 1998. The role of AVS in the sediment as regulator of metal bioavailability in overlying water[J]. Environmental Chemistry, 17(3): 212–217 (in Chinese).
[15] 林祖亨, 梁舜华, 1995. 珠江河口的现代沉积环境与底质重金属的含量分布[J]. 海洋通报, 14(4): 43–49. LIN ZUHENG, LIANG SHUNHUA, 1995. Modern sedimentary environment and heavy metal content distribution in bottom load in Pearl Estuary[J]. Marine Science Bulletin, 14(4): 43–49 (in Chinese).
[16] 刘景春, 严重玲, 胡俊, 2004. 水体沉积物中酸可挥发性硫化物(AVS)研究进展[J]. 生态学报, 24(4): 812–818. LIU JINGCHUN, YAN CHONGLING, HU JUN, 2004. A review on the studies of acid-volatile sulfide in aquatic sediments[J]. Acta Ecologica Sinica, 24(4): 812–818 (in Chinese).
[17] 刘志勇, 潘少明, 程功弼, 等, 2010. 珠江口沉积物210Pb分布特征及环境意义[J]. 沉积学报, 28(1): 166–175. LIU ZHIYONG, PAN SHAOMING, CHENG GONGBI, et al, 2010. 210Pb characteristic in the sediment cores from the Pearl River Mouth and its environmental implication[J]. Acta Sedimentologica Sinica, 28(1): 166–175 (in Chinese).
[18] 娄性义, 1996. 固体废物处理与利用[M]. 北京: 冶金工业出版社: 1–11. LIU XINGYI, 1996. Treatment and utilizing of solid waste[M]. Beijing: Metallurgical Industry Press: 1–11 (in Chinese).
[19] 马玉, 李团结, 高全洲, 等, 2014. 珠江口沉积物重金属背景值及其污染研究[J]. 环境科学学报, 34(3): 712–719. MA YU, LI TUANJIE, GAO QUANZHOU, et al, 2014. Background values and contamination of heavy metals in sediments from the Pearl River Estuary[J]. Acta Scientiae Circumstantiae, 34(3): 712–719 (in Chinese).
[20] 茅志昌, 1995. 长江河口盐水入侵锋研究[J]. 海洋与湖沼, 26(6): 643–649. MAO ZHICHANG, 1995. A study on salt fronts in the ChangJiang River Estuary[J]. Oceanologia et Limnologia Sinica, 26(6): 643–649 (in Chinese).
[21] 闵凤阳, 汪亚平, 左平, 等, 2009. 深圳湾西北部海域表层沉积物的分布特征及输运趋势[J]. 沉积学报, 27(4): 714–722. MIN FENGYANG, WANG YAPING, ZUO PING, et al, 2009. Sediment grain size characteristics and transport patterns in the Northwestern Shenzhen Bay, China[J]. Acta Sedimentologica Sinica, 27(4): 714–722 (in Chinese).
[22] 深圳市海洋局, 2014. 深圳市海洋环境质量公报[R]. 深圳: 深圳市海洋局. SHENZHEN OCEAN BUREAU, 2014. Shenzhen marine environmental quality bulletin[R]. Shenzhen: Shenzhen Ocean Bureau (in Chinese).
[23] 施玉珍, 张际标, 李雪英, 等, 2012. 深圳湾海域沉积物中酸可挥发性硫化物与重金属生态风险评价[J]. 海洋环境科学, 31(4): 492–495. SHI YUZHEN, ZHANG JIBIAO, LI XUEYING, et al, 2012. Assessment on ecological risk of acid-volatile sulfide and tracemetals in marine sediment of Shenzhen Bay[J]. Marine Environmental Science, 31(4): 492–495 (in Chinese).
[24] 谭上进, 朱小山, 周进, 等, 2014. 深圳近岸海域环境状况近10a变化趋势[J]. 海洋环境科学, 33(1): 154–160. TAN SHANGJIN, ZHU XIAOSHAN, ZHOU JIN, et al, 2014. Environmental conditions of Shenzhen offshore waters in recent 10 years[J]. Marine Environmental Science, 33(1): 154–160 (in Chinese).
[25] 唐博, 龙江平, 金路, 等, 2015. 珠江口和北部湾附近海域沉积物重金属生态风险比较[J]. 热带海洋学报, 34(3): 75–81. TANG BO, LONG JIANGPING, JIN LU, et al, 2015. The contrast of heavy metals’ ecological risks in marine sediments between the Beibu Gulf and the Pearl River Delta[J]. Journal of Tropical Oceanography, 34(3): 75–81 (in Chinese).
[26] 王思粉, 黄楚光, 倪志鑫, 等, 2012. 珠江虎门河口表层沉积物中酸可挥发性硫化物的重金属同步提取[J]. 海洋环境科学, 31(4): 500–503. WANG SIFEN, HUANG CHUGUANG, NI ZHIXIN, et al, 2012. Acid volatile sulfide and simultaneously extracted metals in surface sediments in Humen Estuary of the Pearl River[J]. Marine Environmental Science, 31(4): 500–503 (in Chinese).
[27] 王小静, 2012. 不同粒径颗粒物对长江、黄河输送重金属的贡献研究[D]. 青岛: 中国海洋大学. WANG XIAOJING, 2012. Contributions of different size particles to the heavy metals transport in the Changjiang Estuary and Yellow River[D]. Qingdao: Ocean University of China (in Chinese).
[28] 温琰茂, 韦照韬, 1996. 广州城市污泥化学成分和农业利用的环境容量[J]. 中山大学学报: 自然科学版, 35(2): 124–128. WEN YANMAO, WEI ZHAOTAO, 1996. Primary study on the composition and environmental capacity of agricultural application of municipal sewage sludge in Guangzhou[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 35(2): 124–128 (in Chinese).
[29] 武倩倩, 马启敏, 王继纲, 等, 2007. 黄河口近岸海域沉积物酸可挥发性硫化物(AVS)的研究[J]. 海洋环境科学, 26(2): 126–129. WU QIANQIAN, MA QIMIN, WANG JIGANG, et al, 2007. The AVS in surface sediment of near sea area of Huanghe Estuary[J]. Marine Environmental Science, 26(2): 126–129 (in Chinese).
[30] 杨永强, 2007. 珠江口及近海沉积物中重金属元素的分布、赋存形态及其潜在生态风险评价[D]. 广州: 中国科学院广州地球化学研究所. YANG YONGQIANG, 2007. The distribution, speciation and the potential ecological risk assessment of heavy metals in the Pearl River Estuary and Adjacent Shelf[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of science (in Chinese).
[31] 尹希杰, 杨群慧, 王虎, 等, 2007. 珠江口海岸带沉积物中酸可挥发性硫化物与重金属生物毒效性研究[J]. 海洋科学进展, 25(3): 302–310. YIN XIJIE, YANG QUNHUI, WANG HU, et al, 2007. Study on bioavailability of acid volatile sulfide and heavy metal in sediments from the Pearl River Estuary coastal zone[J]. Advances in Marine Science, 25(3): 302–310 (in Chinese).
[32] 于雯泉, 钟少军, 蒲晓强, 等, 2007. 胶州湾李村河口区沉积物酸可挥发硫化物的环境响应[J]. 中国石油大学学报: 自然科学版, 31(6): 27–33, 39. YU WENQUAN, ZHONG SHAOJUN, PU XIAOQIANG, et al, 2007. Environmental response of acid volatile sulfide in sediments of Licun Estuary in Jiaozhou Bay[J]. Journal of China University of Petroleum, 31(6): 27–33, 39 (in Chinese).
[33] 张际标, 刘加飞, 姚兼辉, 等, 2014. 湛江东海岛潮间带沉积物硫化物(AVS)和重金属(SEM)及其生物毒效性评估[J]. 海洋通报, 33(4): 405–412. ZHANG JIBIAO, LIU JIAFEI, YAO JIANHUI, et al, 2014. Acid-volatile sulfide (AVS), simultaneously extracted metals (SEM) in intertidal sediments of Donghai Island, Zhanjiang and their toxic effect on the organism[J]. Marine Science Bulletin, 33(4): 405–412 (in Chinese).
[34] 赵铮, 姜霞, 吴永贵, 等, 2001. 太湖沉积物酸可挥发性硫化物分布特征及重金属生物有效性评价[J]. 环境科学学报, 31(12): 2714–2722. ZHAO ZHENG, JIANG XIA, WU YONGGUI, et al, 2001. Distribution characteristics of acid volatile sulfide and bioavailability evaluation of heavy metals in sediments of Lake Taihu[J]. Acta Scientiae Circumstantiae, 31(12): 2714–2722 (in Chinese).
[35] 左平, 汪亚平, 程珺, 等, 2009. 深圳湾近岸海域表层沉积物中重金属污染评价[J]. 海洋通报, 28(1): 50–54. ZUO PING, WANG YAPING, CHENG JUN, et al, 2009. Pollution assessment of heavy metals in coastal surface sediments of the Shenzhen Bay[J]. Marine Science Bulletin, 28(1): 50–54 (in Chinese).
[36] ALLEN H E, FU GONGMIN, DENG BAOLIN, 1993. Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments[J]. Environmental Toxicology and Chemistry, 12(8): 1441–1453.
[37] ANKLEY G T, DI TORO D M, HANSEN D J, et al, 1996. Technical basis and proposal for deriving sediment quality criteria for metals[J]. Environmental Toxicology and Chemistry, 15(12): 2056–2066.
[38] BERNER R A, 1981. A new geochemical classification of sedimentary environments[J]. Journal of Sedimentary Petrology, 51(2): 359–365.
[39] BERRY W J, MAHONY J D, BOOTHMAN W S, et al, 1996. Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations[J]. Environmental Toxicology and Chemistry, 15(12): 2067–2079.
[40] BROUWER H, MURPHY T, 1995. Volatile sulfides and their toxicity in freshwater sediments[J]. Environmental Toxicology and Chemistry, 14(2): 203–208.
[41] DI TORO D M, MAHONY J D, HANSEN D J, et al, 1992. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments[J]. Environmental Science and Technology, 26(1): 96–101.
[42] DI TORO D M, MCGRATH J A, HANSEN D J, et al, 2005. Predicting sediment metal toxicity using a sediment biotic ligand model: Methodology and initial application[J]. Environmental Toxicology & Chemistry, 24(10): 2410–2427.
[43] F?RSTNER U, WITTMANN G T W, 1981. Metal pollution in the aquatic environment[M]. 2nd ed. Berlin Heidelberg: Springer- Verlag.
[44] HORNBERGER M I, LUOMA S N, VAN GEEN A, et al, 1999. Historical trends of metals in the sediments of San Francisco Bay, California[J]. Marine Chemistry, 64(1/2): 39–55.
[45] LEONARD E N, MATTSON V R, BENOIT D A, et al, 1993. Seasonal variation of acid volatile sulfide concentration in sediment cores from three northeastern Minnesota lakes[J]. Hydrobiologia, 271(2): 87–95.
[46] PALANQUES A, SANCHEZ-CABEZA J A, MASQUé P, et al, 1998. Historical record of heavy metals in a highly contaminated Mediterranean deposit: The Besòs prodelta[J]. Marine Chemistry, 61(3/4): 209–217.
[47] RICKARD D, MORSE J W, 2005. Acid volatile sulfide (AVS)[J]. Marine Chemistry, 97(3/4): 141–197.
[48] WANG FEIYUE, CHAPMAN P M, 1999. Biological implications of sulfide in sediment ? A review focusing on sediment toxicity[J]. Environmental Toxicology & Chemistry, 18(11): 2526–2532.
[49] WIJSMAN J W M, MIDDELBURG J J, HERMAN P M J, et al, 2001. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea[J]. Marine Chemistry, 74(4): 261–278.
[50] YU KUANGCHUNG, TSAI L J, CHEN S H, et al. 2001. Chemical binding of heavy metals in anoxic river sediments[J]. Water Research, 35(17): 4086–4096.
[51] ZHANG J, HUANG W W, WANG J H, 1994. Trace-metal chemistry of the Huanghe (Yellow River), China — Examination of the data from in situ measurements and laboratory approach[J]. Chemical Geology, 114(1/2): 83–94.
文章导航

/