南海东北部混合层深度对热带气旋海鸥和凤凰的响应
作者简介:宋勇军(1988—), 男, 河南省漯河市人, 硕士研究生, 研究方向为遥感海洋生态。E-mail:song_yjun@163.com
收稿日期: 2016-05-04
要求修回日期: 2016-05-31
网络出版日期: 2017-01-19
基金资助
国家自然科学基金重点项目 (41430968)
21世纪海上丝绸之路协同创新中心重大项目(2015HS05)
Mixed layer depth responses to tropical cyclones Kalmaegi and Fung-Wong in the northeastern South China Sea
Received date: 2016-05-04
Request revised date: 2016-05-31
Online published: 2017-01-19
Supported by
Key Project of National Natural Sciences Foundation of China (41430968)
Major Program of Collaborative Innovation Center for 21st-Century Maritime Silk Road Studies (2015HS05)
Copyright
利用Argo浮标和多源卫星遥感获取的温度、盐度剖面数据和海表面温度(sea surface temperature, SST)、海表面风场等数据, 结合美国国家环境预报中心(National Centers for Environmental Prediction Ⅱ, NCEP Ⅱ)再分析资料, 研究了南海东北部混合层深度(mixed layer depth, MLD)对2014年9月中下旬相继过境的热带气旋“海鸥”(台风)和“凤凰”(热带风暴)的响应。结果表明, 受“海鸥”和“凤凰”过境时的“风泵”作用, 海-气界面向上进入大气的最大净热通量由170W·m-2升高至400W·m-2, 引起SST最大降温达到3.02℃。在时间尺度上, 后续的“凤凰”使“海鸥”引发的“冷迹”持续超过10天, 出现SST降温的“叠加效应”。“海鸥”过境1天后, 其“冷迹”MLD从23m加深至50m; 而“凤凰”过境8h后, 风应力驱动的离岸埃克曼输送引发了沿岸上升流, 导致台湾西南部近岸海域MLD从31m加深至91m。热带气旋过境后, 在混合层内, 剖面盐度迟于剖面温度达到充分均匀, 且盐度恢复快于温度, 揭示混合层响应的“时滞效应”。在空间分布上, MLD与SST在两个热带气旋路径右侧(沿其移动方向)的变化幅度均大于左侧, 而“冷迹”内MLD的不均匀加深, 甚至变浅, 可能揭示了下层冷水因埃克曼抽吸在上升流与下降流之间转换而被抬升到不同高度。
宋勇军 , 唐丹玲 . 南海东北部混合层深度对热带气旋海鸥和凤凰的响应[J]. 热带海洋学报, 2017 , 36(1) : 15 -24 . DOI: 10.11978/2016045
Utilizing the vertical profiles of temperature and salinity data obtained by Argo floats and multi-source satellite remote sensing data, including sea surface temperature (SST) and sea surface wind fields, combined with the National Centers for Environmental Prediction (NCEP) Ⅱ reanalysis data, we analyzed changes of mixed layer depth (MLD) in the northeastern South China Sea (SCS) in responses to tropical cyclones Kalmaegi (typhoon) and Fung-Wong (tropical storm), which passed the SCS in succession in mid and late September 2014. The results indicate that the maximum net heat flux (upward into the air) increased from 170 to 400 W·m-2 at the air-sea interface, caused the maximum SST cooling of 3℃ by the “wind pump” effect after Kalmaegi and Fung-Wong passed through. The “cold wake” induced by Kalmaegi lasted for more than 10 days thanks to the following tropical storm Fung-Wong, indicating the effect of superposition in SST cooling. MLD was deepened from 23 to 50 m in the “cold wake” one day after Kalmaegi passed by. MLD was deepened from 31 to 91 m eight hours after Fung-Wong passed by, due to the coastal upwelling induced by offshore Ekman transport driven by wind stress at the southwestern of Taiwan Island. After the tropical cyclones passed by, salinity profile in the mixed layer showed uniformity later than temperature profile, and recovered earlier than temperature profile, revealing the time lag in mixed layer responses. For the spatial variation response to the two tropical cyclones, the changes of SST and MLD were larger on the right-hand side of the tropical cyclones (along the moving directions of tropical cyclones) than on the left-hand side. The uneven deepening even shallowing in MLD in the cold wake may reveal that different depths of deep cold water uplifted by the vertical current switch between upwelling and downwelling in the Ekman layer due to the change of Ekman pumping velocity.
Key words: mixed layer; tropical cyclone; SST; wind stress; marine remote sensing
Fig. 1 Tracks, intensity, and the maximum sustained wind speeds of Typhoon Kalmaegi (201415) and Tropical Strom Fung-Wong (201416), and the locations of five Argo floats in September 2014.图1 台风“海鸥”和热带风暴“凤凰”的路径、最大持续风速和5个Argo浮标的位置 |
Fig. 2 Changes of SST in responses to Typhoon Kalmaegi and Tropical Strom Fung-Wong. Before: Sep. 12 (a); during: Sep. 15 (b), Sep. 16 (c), Sep. 19 (d), Sep. 20 (e), Sep. 21 (f); after: Sep. 24 (g), Sep. 27 (h)图2 SST响应台风“海鸥”和热带风暴“凤凰”的变化过程 |
Tab. 1 Changes of SST and MLD in responses to tropical cyclones at Argo floats’ locations表1 Argo浮标处SST与MLD响应热带气旋的变化 |
浮标 | 海鸥(9月14~16日*) | 凤凰(9月19~21日*) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
与路径的关系 | SST降低/℃ | MLD/m | 与路径的关系 | SST降低/℃ | MLD/m | |||||||
位置 | 距离/km | 遥感 数据 | Argo 数据 | 过境前 | 最大 深度 | 位置 | 距离/km | 遥感 数据 | Argo 数据 | 最大 深度 | 恢复 深度 | |
Argo 1 | 右 | 125 | 0.48 | 0.41 | 31 | 35 | 左 | 260 | 0.88 | 0.60 | 43 | 46 |
Argo 2 | 左 | 160 | 2.15 | 2.35 | 23 | 50 | 左 | 400 | 2.68 | × | 37 | 31 |
Argo 3 | 中 | 10 | 0.70 | 0.96 | 40 | 41 | 左 | 100 | 1.45 | × | 45 | 36 |
Argo 4 | 右 | 180 | 0.45 | 0.54 | 31 | × | 中 | 0 | 1.40 | 1.42 | 42 | 36 |
Argo 5 | 右 | 480 | 0.36 | × | 31 | × | 左 | 25 | 0.75 | 0.51 | 91 | 49 |
注: *表示热带气旋过境研究区域的日期; ×表示缺测; 因为“凤凰”过境前Argo浮标所在海域的MLD是受到“海鸥”不同程度影响而处于非稳定状态, 故表中两个热带气旋在MLD一栏的项目有所差别。 |
Fig. 3 During the processes of Kalmaegi (201415) and Fung-Wong (201416) in 2014, vertical profiles of temperature (solid lines) and salinity (dashed lines) within the depth of 200 m were derived from five Argos at different times: Sep. 11~12 (a), Sep. 15~16 (b), Sep. 19~20 (c), Sep. 23~24 (d), Sep. 27 (e), and the time difference in every figure was within 24 hours图3 台风“海鸥”和热带风暴“凤凰”过程中, 5个Argo浮标在不同日期测得的200m内的剖面温度(实线)、盐度(虚线)剖面数据 |
Fig. 4 Changes of MLD, temperature (b) and salinity (c) within the mixed layer derived from Argo 5 at different times, during the processes of Typhoon Kalmaegi (201415) and Tropical Strom Fung-Wong (201416) in 2014. Arrows indicate the time when Fung-Wong passed the Luzon Strait, black dots in b and c are the mean values of temperature and salinity in the mixed layer, respectively图4 台风“海鸥”和热带风暴“凤凰”过程中, 浮标Argo 5在不同日期测得的MLD(a)以及混合层内温度(b)、盐度(c)的变化 |
Fig. 5 The sea surface net heat flux (units: W·m-2, positive upward) during Typhoon Kalmaegi (201415) and Tropical Strom Fung-Wong (201416) in 2014. Before: Sep. 12 (a); during: Sep. 15 (b), Sep. 16 (c), Sep. 19 (d), Sep. 20 (e), Sep. 21 (f); after: Sep. 24 (g), Sep. 27 (h)图5 台风“海鸥”和热带风暴“凤凰”过程中的海表面净热通量(向上为正) |
Fig. 6 Changes of Ekman layer depth in responses to Typhoon Kalmaegi (201415) and Tropical Strom Fung-Wong (201416). Before: Sep. 12 (a); during: Sep. 14 (b), Sep. 15 (c), Sep. 16 (d), Sep. 19 (e), Sep. 20 (f), Sep. 21 (g); after: Sep. 24 (h)图6 Ekman层深度在台风“海鸥”和热带气旋“凤凰”过境时的变化 |
Fig. 7 Changes of Ekman transport (vector) and Ekman pumping velocity (color shading) in the Ekman layer during Typhoon Kalmaegi (201415) and Tropical Strom Fung-Wong (201416) in 2014. Before: Sep. 12 (a); during: Sep. 15 (b), Sep. 16 (c), Sep. 19 (d), Sep. 20 (e), Sep. 21 (f); after: Sep. 24 (g), Sep. 27 (h)图7 Ekman层内埃克曼输送(向量)和埃克曼抽吸(色标)在台风“海鸥”和热带气旋“凤凰”过程中的变化 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
/
〈 | 〉 |