综述

珠江口盆地(东部)探明储量影响因素及发展趋势

  • 张为彪 ,
  • 钟辉 ,
  • 郑洁 ,
  • 夏弋峻 ,
  • 邹清文
展开
  • 1. 中海石油(中国)有限公司深圳分公司, 广东 深圳 518054;
    2. 中海油深圳实验中心, 广东 深圳 518054

收稿日期: 2016-10-07

  修回日期: 2016-11-25

  网络出版日期: 2017-06-01

基金资助

广州市科技计划项目(一般项目)(201607010220)

Review on cabled seafloor observatories in the world

  • ZHU Junjiang ,
  • SUN Zongxun ,
  • LIAN Shumin ,
  • YIN Jianpin ,
  • LI Zhigang
Expand
  • 1. South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
    2. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

Received date: 2016-10-07

  Revised date: 2016-11-25

  Online published: 2017-06-01

Supported by

Guangzhou Science and Technology Project (201607010220)

摘要

近期有缆海底观测网发展迅猛, 世界各国包括加拿大、美国、日本和欧洲国家都依据自己的科学目标, 建立了相应的有缆海底观测网。文章针对不同国家有缆海底观测网系统的组成和建设分别做了概述和评论。从1978年开始到现在, 日本成功建设了10条有缆海底地震观测网, 从早期同轴电缆作为主干电缆, 发展到使用光电缆连接水下设施。加拿大成功建成近岸尺度和区域尺度两条有缆海底观测网。美国2012年成功建成目前世界上最长的一条区域海底观测网(约900km)。欧洲国家也正在开展在10个海区建立有缆观测网。跟随国外的步伐, 我国和我国台湾地区也建立了自己的海底观测站(东海小衢山)和有缆观测网(中国台湾妈祖)。文章依据世界上已经建立的有缆海底观测网, 分析认为与全球有缆观测网布设有关的遥控水下机器人是关键技术, 并探讨了海底观测网今后的发展和面临的挑战。

本文引用格式

张为彪 , 钟辉 , 郑洁 , 夏弋峻 , 邹清文 . 珠江口盆地(东部)探明储量影响因素及发展趋势[J]. 热带海洋学报, 2017 , 36(3) : 20 -33 . DOI: 10.11978/2016094

Abstract

Marine cabled seafloor observatories have been constructed and developed quickly recently in the world. Based on scientific requirements and objectives, many countries, including Canada, United States of America, Japan, and European countries, have built up cabled seafloor observatories, respectively. Infrastructures and progresses of different cabled seafloor observatories constructed by different countries were outlined and reviewed in this paper. Since 1978, 10 cabled seafloor observatories in Japan have been successfully built using coaxial cables at the beginning and using fiber-optical cables recently. One near-coast seafloor observatory and one regional-scale observatory were built in Canada. Two seafloor observatories were organized and managed by the Ocean Network Canada (ONC), and both are maintained by the University of Victoria. In 2012, the longest regional cabled seafloor observatory in the world (nearly 900 km long) was deployed in the USA. Cabled seafloor observatories in Europe have been planned to cover different ocean regions. In China, cabled seafloor observatories were built in Taiwan (MACHO) and in the East China Sea (Xiaoqushan). Based on these cabled seafloor observatories in the world, we proposed important technologies required by ocean networks, and suggested that remotely operated vehicles play key roles when cabled seafloor observatories are reconstructed. Finally, the development and challenge of cabled seafloor observatories are discussed, including some key notes and questions that should be considered by decision-makers when a new cabled seafloor observatory will be prepared and developed in China.

参考文献

[1] 陈鹰, 杨灿军, 陶春辉, 等, 2006. 海底观测系统[M]. 北京: 海洋出版社, 1–129. CHEN YING, YANG CANJUN, TAO CHUNHUI, et al, 2006. Deep sea observatory system[M]. Beijing: China Ocean Press, 1–129 (in Chinese).
[2] 封锡盛, 2000. 从有缆遥控水下机器人到自治水下机器人[J]. 中国工程科学, 2(12): 29–33, 58. FENG XISHENG, 2000. From remotely operated vehicles to autonomous undersea vehicles[J]. Engineering Science, 2(12): 29–33, 58 (in Chinese).
[3] 封锡盛, 李一平, 2013. 海洋机器人30年[J]. 科学通报, 58(增刊Ⅱ): 2–7. FENG XISHENG, LI YIPING, 2013. Thirty years evolution of SIA’s unmanned marine vehicles[J]. Chinese Science Bulletin, 58(S2): 2–7 (in Chinese).
[4] 李健, 陈荣裕, 王盛安, 等, 2012. 国际海洋观测技术发展趋势与中国深海台站建设实践[J]. 热带海洋学报, 31(2): 123–133. LI JIAN, CHEN RONGYU, WANG SHENG’AN, et al, 2012. Development of international marine observation system and construction of deep-sea station in China[J]. Journal of Tropical Oceanography, 31(2): 123–133 (in Chinese).
[5] 李三忠, 金宠, 戴黎明, 等, 2009a. 洋底动力学——国际海底相关观测网络与探测系统的进展与展望[J]. 海洋地质与第四纪地质, 29(5): 131–143. LI SANZHONG, JIN CHONG, DAI LIMING, et al, 2009a. Marine geodynamics — advances and perspectives of international oceanfloor-related observatory network and exploration technique system[J]. Marine Geology & Quaternary Geology, 29(5): 131–143 (in Chinese).
[6] 李三忠, 张国伟, 刘保华, 2009b. 洋底动力学——从洋脊增生系统到俯冲消减系统[J]. 西北大学学报(自然科学版), 39(3): 434–443. LI SANZHONG, ZHANG GUOWEI, LIU BAOHUA, 2009b. Marine geodynamics: from mid-oceanic ridge system to subduction factory[J]. Journal of Northwest University (Natural Science Edition), 39(3): 434–443 (in Chinese).
[7] 李颖虹, 王凡, 王东晓, 2008. 中国科学院近海海洋观测研究网络建设概况与展望[J]. 中国科学院院刊, 23(3): 274–279. LI YINGHONG, WANG FAN, WANG DONGXIAO, 2008. The general situation and prospects of the construction of offshore marine observation and research network of CAS[J]. Bulletin of the Chinese Academy of Sciences, 23(3): 274–279 (in Chinese).
[8] 李颖虹, 王凡, 任小波, 2010. 海洋观测能力建设的现状、趋势与对策思考[J]. 地球科学进展, 25(7): 715–722. LI YINGHONG, WANG FAN, REN XIAOBO, 2010. Development trend and strategy of ocean observing capability[J]. Advances in Earth Science, 25(7): 715–722 (in Chinese).
[9] 李一平, 李硕, 张艾群, 2016. 自主/遥控水下机器人研究现状[J]. 工程研究,8(2): 217–222.
LI YIPING, LI SHUO, ZHANG AIQUN, 2016. Research status of autonomous & remotely operated vehicle[J]. Journal of Engineering Studies, 8(2): 217–222 (in Chinese).
[10] 李昭兴, 许树坤, 郭凯文, 2010. 海底地震观测系统咨询研究[C]// “中央气象局地震测报中心”. “中央气象局”地震技术报告集编.台北: 471–482. LEE CHAOSHINE, HSU SHUKUN, LIU JIAXUAN, et al, 2010. Evaluation research of the submarine cable observation system[C]// “CENTRAL METEOROLOGICAL BUREAU EARTHQUAKE PREDICTION CENTER”. Earthquake technical report of the “Central Meteorological Bureau”. Taipei: 471–482 (in Chinese).
[11] 马伟锋, 崔维成, 刘涛, 等, 2009. 海底电缆观测系统的研究现状与发展趋势[J]. 海岸工程, 28(3): 76–84. MA WEIFENG, CUI WEICHENG, LIU TAO, et al, 2009. Present status and development tendency of submarine cable-connected observation system[J]. Coastal Engineering, 28(3): 76–84 (in Chinese).
[12] 汪品先, 2007. 从海底观察地球——地球系统的第三个观测平台[J]. 自然杂志, 29(3): 125–130. WANG PINXIAN, 2007. Seaflooor observatories: the third platform for earth system observation[J]. Chinese Journal of Nature, 29(3): 125–130 (in Chinese).
[13] 汪品先, 2011. 海洋科学和技术协同发展的回顾[J]. 地球科学进展, 26(6): 644–649.
WANG PINXIAN, 2011. Coupled development in marine science and technology: a retrospect[J]. Advances in Earth Science, 26(6): 644–649 (in Chinese).
[14] 王盛安, 龙小敏, 潘文亮, 等, 2015. 基于异地潮位资料和BP神经网络的潮位推算研究[J]. 热带海洋学报, 34(2): 1–7. WANG SHENG’AN, LONG XIAOMIN, PAN WENLIANG, et al, 2015. Tide prediction using tide observation at a nearby site based on BP neural network[J]. Journal of Tropical Oceanography, 34(2): 1–7 (in Chinese).
[15] 许惠平, 张艳伟, 徐昌伟, 等, 2011. 东海海底观测小衢山试验站[J]. 科学通报, 56(22): 1839–1845. XU HUIPING, ZHANG YANWEI, XU CHANGWEI, et al, 2011. Coastal seafloor observatory at Xiaoqushan in the East China Sea[J]. Chinese Science Bulletin, 56(26): 2839–2845 (in Chinese).
[16] 许树坤, 李昭兴, 刘家瑄, 等. 2005. 台湾东部海域海底观测系统建置评估[C]// “中央气象局地震测报中心”. “中央气象局”地震技术报告集编. 台北: 45: 361–382. HSU SHUKUN, LEE CHAOSHINE, LIU JIAXUAN, et al, 2005. Evaluation of a configuration of the submarine cable observation system off eastern Taiwan[C]// “CENTRAL METEOROLOGICAL BUREAU EARTHQUAKE PREDICTION CENTER”. Earthquake technical report of the “Central Meteorological Bureau”. Taipei: 45: 361–382 (in Chinese).
[17] 张友权, 2012. 福建海洋观测示范网建设与应用[J]. 海洋技术, 31(1): 111–114.ZHANG YOUQUAN, 2012. Application and construction of Fujian Province marine observation demonstration network[J]. Ocean Technology, 31(1): 111–114 (in Chinese).
[18] 张艳伟, 范代读, 许惠平, 2011. 东海海底观测网小衢山试验站记录的2010年智利海啸信号分析[J]. 科学通报, 56(32): 2732–2740. ZHANG YANWEI, FAN DAIDU, XU HUIPING, 2011. Records of the tsunami induced by the 2010 Chilean earthquake from Xiaoqushan seafloor observatory in the East China Sea[J]. Chinese Science Bulletin, 56(27): 2957–2965 (in Chinese).
[19] AGUZZI J, COSTA C, ROBERT K, et al, 2011. Automated image analysis for the detection of benthic crustaceans and bacterial mat coverage using the VENUS undersea cabled network[J]. Sensors, 11(12): 10534–10556.
[20] AUSTIN T, EDSON J, MCGILLIS W, et al, 2000. The Martha’s Vineyard coastal observatory: a long term facility for monitoring air-sea processes[C]// INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. Proceedings of oceans 2000-MTS/IEEE. Providence: IEEE:1937–1941.
[21] BARNES C R, TUNNICLIFFE V, 2008. Building the world’s first multi-node cabled ocean observatories (NEPTUNE Canada and VENUS, Canada): science, realities, challenges and opportunities[C]// INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. Proceedings of oceans 2008-MTS/IEEE Kobe techno-ocean. Kobe: IEEE: 1–8.
[22] BUTLER R, 2003. The Hawaii-2 observatory: observation of Nanoearthquakes[J]. Seismological Research Letters, 74(3): 290–297.
[23] CHAVE A D, DUENNEBIER F K, BUTLER R, et al, 2002. H2O: the Hawaii-2 observatory[M]// BERANZOLI L, FAVALI P, SMRIGLIO G. Science technology synergy for research in the marine environment: challenges for the XXI century, Volume 12. Amsterdam: Elsevier: 83–91.
[24] CHAVE A D, WATERWORTH G, MAFFEI A R, et al, 2004. Cabled ocean observatory systems[J]. Marine Technology Society Journal, 38(2): 30–43.
[25] CHRISTODOULOU D, PAPATHEODOROU G, FERENTINOS G, et al, 2003. Active seepage in two contrasting pockmark fields in the Patras and Corinth gulfs, Greece[J]. Geo-Marine Letters, 23(3/4): 194–199.
[26] DELANEY J R, HEATH G R, HOWE B, et al, 2000. NEPTUNE: real-time ocean and earth sciences at the scale of a tectonic plate[J]. Oceanography, 13(2): 71–79.
[27] DICKEY T D, BIDIGARE R R, 2005. Interdisciplinary oceanographic observations: the wave of the future[J]. Scientia Marina, 69(S1): 23–42.
[28] DIMARCO S F, WANG Z K, JOCHENS A, et al, 2012. Cabled ocean observatories in sea of Oman and Arabian Sea[J]. EOS, Transactions American Geophysical Union, 93(31): 301–302.
[29] DU VALL K, INGLE S, SNIDER J, et al, 2011. Cabled ocean observatories in the sea of Oman and Arabian Sea[C]// INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. Proceedings of oceans 2011. Waikoloa: IEEE: 1–6.
[30] DUENNEBIER F K, HARRIS D W, JOLLY J, et al, 2002a. HUGO: the Hawaii undersea geo-observatory[J]. IEEE Journal of Oceanic Engineering, 27(2): 218–227.
[31] DUENNEBIER F K, HARRIS D W, JOLLY J, et al, 2002b. The Hawaii-2 observatory seismic system[J]. IEEE Journal of Oceanic Engineering, 27(2): 212–217.
[32] DUENNEBIER F K, HARRIS D, JOLLY J, 2008. ALOHA cabled observatory will monitor ocean in real time[J]. Sea Technology, 49(2): 51–54.
[33] EDSON J B, MCGILLIS W R, AUSTIN T C, 2000. A new coastal observatory is born: Martha’s vineyard offers scientifically exciting site[J]. Oceanus, 42(1): 31–33.
[34] FAVALI P, BERANZOLI L, 2006. Seafloor observatory science: a review[J]. Annals of Geophysics, 49(2/3): 515–567.
[35] FAVALI P, BERANZOLI L, 2009. EMSO: European multidisciplinary seafloor observatory[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 602(1): 21–27.
[36] FAVALI P, SMRIGLIO G, BERANZOLI L, et al, 2000. European seafloor observatory offers new possibilities for deep-sea study[J]. EOS, Transactions American Geophysical Union, 81(5): 45–49.
[37] FORRESTER N C, STOKEY R P, VON ALT C, et al, 1997. The LEO-15 long-term ecosystem observatory: design and installation[C]// INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. Proceedings of oceans 1997-MTS/IEEE. Halifax: IEEE: 2: 1082–1088.
[38] HOWE B M, CHAN T, EL SHARKAWI M, et al, 2006. Power system for the MARS ocean cabled observatory[C]// MARINE INSTITUTE. Proceedings of the scientific submarine cable 2006 conference. Dublin.
[39] HOWE B M, KIRKHAM H, VORPERIA V, 2002. Power system considerations for undersea observatories[J]. IEEE Journal of Oceanic Engineering, 27(2): 267–274.
[40] HOWE B M, LUKAS R, DUENNEBIER F, et al, 2011. ALOHA cabled observatory installation[C]// INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. Proceedings of oceans 2011-MTS/IEEE. Waikoloa: IEEE: 1–11.
[41] JOSEPH A, 2011. Earthquake monitoring for early tsunami warnings[M]// JOSEPH A. Tsunamis: detection, monitoring, and early-warning technologies. London: Academic Press: 125–148.
[42] KASAHARA J, KAWAGUCHI K, IWASE R, et al, 2001. Installation of the multi-disciplinary VENUS observatory at the Ryukyu Trench using Guam-Okinawa geophysical submarine cable (GOGC: former TPC-2 cable)[J]. JAMSTEC Journal of Deep Sea Research, 18: 193–207.
[43] KASAHARA J, SATO T, MOMMA H, et al, 1998. A new approach to geophysical real-time measurements on a deep-sea floor using decommissioned submarine cables[J]. Earth, Planets and Space, 50(11/12): 913–925.
[44] MARINARO G, ETIOPE G, GASPARONI F, et al, 2004. GMM — a gas monitoring module for long-term detection of methane leakage from the seafloor[J]. Environmental Geology, 46(8): 1053–1058.
[45] MARINARO G, ETIOPE G, LO BUE N, et al, 2006. Monitoring of a methane-seeping pockmark by cabled benthic observatory (Patras Gulf, Greece)[J]. Geo-Marine Letters, 26(5): 297–302.
[46] MARINARO G, ETIOPE G, LO BUE N, et al, 2007. A cabled monitoring module for gas seepage: the first experiment in a pockmark (Patras Gulf, Greece)[C]// INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. Proceedings of 2007 symposium on underwater technology and workshop on scientific use of submarine cables and related technologies. Tokyo: IEEE: 343–348.
[47] MCGILL P, NEUHAUSER D, STAKES D, et al, 2002. Deployment of a long-term broadband seafloor observatory in Monterey Bay[C]. Washington, D C: American Geophysical Union Fall Meeting.
[48] MOMMA H, SHIRASAKI Y, KASAHARA J, 1997. The VENUS project-instrumentation and underwater work system[C]// INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. Proceedings of the international workshop on the scientific use of submarine cables. Okinawa: IEEE: 103–108.
[49] NAGUMO S, WALKER D A, 1989. Ocean bottom geoscience observatories: reuse of transoceanic telecommunications cables[J]. EOS, Transactions American Geophysical Union, 70(26): 673–677.
[50] NATIONAL RESEARCH COUNCIL (NRC), 2000. Illuminating the hidden planet: the future of seafloor observatory science[R]. Washington D C: National Academy Press: 1–135.
[51] ORION EXECUTIVE STEERING COMMITTEE, 2005. Ocean observatories initiative science plan[C]. Washington D C: Geoscience Professional Services: 1–102.
[52] OSWALD J N, AU W W L, DUENNEBIER F, 2011. Minke whale (Balaenoptera acutorostrata) boings detected at the Station ALOHA cabled observatory[J]. The Journal of the Acoustical Society of America, 129(5): 3353–3360.
[53] PERSON R, AOUSTIN Y, BLANDIN J, et al, 2006. From bottom landers to observatory networks[J]. Annals of Geophysics, 49(2/3): 581–593.
[54] PIRENNE B, GUILLEMOT E, 2009. The data management system for the VENUS and NEPTUNE cabled observatories[C]// INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. Proceedings of oceans 2009-EUROPE. Bremen: IEEE: 1–4.
[55] PRIEDE I G, SOLAN M, 2002. European seafloor observatory network[R]. Aberdeen: 1–362.
[56] PRIEDE M, SOLAN J, MIENERT R, et al, 2004. ESONET–European seafloor observatory network[C]// INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. Proceedings of the MTS/IEEE techno-ocean’04. Kobe: IEEE: 2155–2163.
[57] PUILLAT I, LANTERI N, DROGOU J F, et al, 2012. Open-sea observatories: a new technology to bring the pulse of the Sea to human awareness[M]// MARCELLI M. Oceanography. France: InTech Press: 1–40.
[58] ROMANOWICZ B, STAKES D, DOLENC D, et al, 2006. The Monterey Bay broadband ocean bottom seismic observatory[J]. Annals of Geophysics, 49(2/3): 607–623.
[59] ROMANOWICZ B, STAKES D, UHRHAMMER R, et al, 2003. The MOBB experiment: a prototype permanent off-shore ocean bottom broadband station[J]. EOS, Transactions American Geophysical Union, 84(34): 325–332.
[60] TAYLOR S M, 2008. Supporting the operations of the NEPTUNE Canada and VENUS cabled ocean observatories[C]// INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. Proceedings of oceans 2008-MTS/IEEE Kobe techno-ocean. Kobe: IEEE: 1–8.
[61] TAYLOR S M, 2009. Transformative ocean science through the VENUS and NEPTUNE Canada ocean observing systems[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 602(1): 63–67.
[62] THE 1996 LOIHI SCIENCE TEAM, 1997. Researchers rapidly respond to submarine activity at Loihi Volcano, Hawaii[J]. EOS, Transactions American Geophysical Union, 78(22): 229–233.
[63] UHRHAMMER R, ROMANOWICZ B, NEUHAUSER D, et al, 2002. Instrument testing and first results from the MOBB observatory[C]. Washington D C: American Geophysical Union Fall Meeting.
[64] VON ALT C J, DE LUCA M P, GLENN S M, et al, 1997. LEO-15: monitoring and managing coastal resources[J]. Sea Technology, 38: 105–109.
[65] VON ALT C J, GRASSLE J F, 1992. Leo-15 an unmanned long term environmental observatory[C]// INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. Proceedings of oceans 1992. Newport: IEEE: 849–854.
[66] WALKER D A, 1991. Using transoceanic cables to quantify global environmental changes[J]. EOS, Transactions American Geophysical Union, 72(37): 393–398.
[67] WANG ZHANKUN, DIMARCO S F, ST?SSEL M M, et al, 2012. Oscillation responses to tropical Cyclone Gonu in northern Arabian Sea from a moored observing system[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 64: 129–145.
[68] WOODROFFE A M, PRIDIE S W, DRUCE G, 2008. The NEPTUNE Canada junction box-interfacing science instruments to sub-sea cabled observatories[C]// INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. Proceedings of oceans 2008-MTS/IEEE Kobe techno-ocean. Kobe: IEEE: 1–5.
文章导航

/