珠江口盆地(东部)探明储量影响因素及发展趋势
作者简介: 张为彪(1987—), 男, 河北省秦皇岛市人, 硕士研究生, 主要从事海域油气勘探研究。E-mail: zhangwb9@cnooc.com.cn
收稿日期: 2016-10-11
要求修回日期: 2016-12-12
网络出版日期: 2017-06-01
The influence factors and development tendency of proved reserves in the eastern Pearl River Mouth Basin
Received date: 2016-10-11
Request revised date: 2016-12-12
Online published: 2017-06-01
Copyright
珠江口盆地(东部)已有39年的勘探历史, 其储量发现过程既有自身的特性, 又有与其他盆地类似的共性。影响其储量发现的因素有内在因素和外在因素两个方面。内在因素包括盆地类型、油气地质特征和特殊的海域勘探环境。外在因素包括勘探所处阶段、勘探投入和理论技术。从研究区的油气地质特征、勘探历史和现状出发, 考虑影响研究区储量发现的各种因素, 通过模型研究与对比分析, 建立了研究区储量发展趋势模型, 研究结果表明: 在保证充足勘探投入和理论技术不断进步的前提下, 研究区的勘探生命历程分为早期阶段(1977—2032年, 探明速度小于0.7%)、高峰阶段(2033—2081年, 探明速度大于0.7%)和萎缩阶段(2082年以后, 探明速度小于0.7%)。早期阶段结束时, 探明程度约为20%, 高峰阶段结束时, 探明程度约为57%, 储量发现峰值年度为2055年左右, 届时探明程度约37%。目前, 研究区处于早期阶段末期, 年探明储量增长较快。
张为彪 , 钟辉 , 郑洁 , 夏弋峻 , 邹清文 . 珠江口盆地(东部)探明储量影响因素及发展趋势[J]. 热带海洋学报, 2017 , 36(3) : 94 -101 . DOI: 10.11978/2016095
The exploration has lasted for 39 years in the eastern Pearl River Mouth Basin, where the process of reserves discovery, compared with that of other basins, has characteristic features in some ways and similar features in some other ways. The factors affecting reserves discovery in the area include internal factors and external factors. The internal factors are the type and geological characteristics of the basin, and the unique marine exploration environment. The external factors include exploration stage, exploration investment, and theory and technology. Based on the oil and gas geological features, exploration history and current situation of the study area, considering various factors influencing the reserves discovery in the area, and by studying and comparing prediction models, we establish the reserves development trend model of the area. We believe that, on the premise that there is sufficient investment, and that both theory and technology develop constantly, the exploration life course of the area can be divided into early stage (1977-2032, the speed of ascertaining reserves is less than 0.7%), peak stage (2033-2081, the speed of ascertaining reserves is greater than 0.7%) and atrophy stage (1982-, the speed of ascertaining reserves is less than 0.7%). At the end of the early stage, about 20% of the oil and gas resources will be found; and at the end of the peak stage, the number is 57%. The peak year is around 2055 when the number is 37%. At present, the study area is in the final phase of the early stage, and the annual proven reserves increase rapidly. The paper serves as a reference for accurately grasping main factors influencing reserves discovery in the area.
Fig. 1 Tectonic framework of the Pearl River Mouth Basin图1 珠江口盆地构造区划 |
Fig. 2 The process of the proved reserves discovery in the eastern Pearl River Mouth Basin图2 珠江口盆地(东部)探明储量发现历程 |
Fig. 3 Relationship between the averaged proved reserves per year and the geological resources (a) and between the averaged proved reserves per year and the enrichment of resources (b) in the eastern basins of SINOPEC and the eastern Pearl River Mouth Basin图3 中石化的东部盆地和珠江口盆地(东部)年均探明储量与资源量(a)和资源丰度(b)的关系^正方形点表示中石化东部盆地; 三角形点表示珠江口盆地各主要凹陷 |
Fig. 4 Relationship between the speed at which the reserves were proved and the proportion of the reserves that had been proved in Jiyang Depression (a), Liaohe Depression (b) and the eastern Pearl River Mouth Basin (c)图4 济阳坳陷(a)、辽河凹陷(b)及珠江口盆地(东部)(c)储量探明速度与探明程度的关系^实线表示探明速度随探明程度变化的曲线; 虚线表示探明速度为0.7%的水平线 |
Fig. 5 The development tendency model of proved reserves in the eastern Pearl River Mouth Basin图5 珠江口盆地(东部)储量发展趋势模型^红色趋势线表示累计探明储量; 蓝色趋势线表示年探明储量 |
Fig. 6 Relationship between proved reserves and the quantity of 2D seismic (a), between proved reserves and 3D seismic (b), and between proved reserves and exploration wells (c) in the eastern Pearl River Mouth Basin in each calendar year图6 珠江口盆地(东部)历年探明储量与二维地震(a)、三维地震(b)和探井(c)工作量的相关关系 |
Tab. 1 Evaluation of application effect of reserves prediction models in the study area表1 储量预测模型及其在研究区的应用效果评价 |
模型类别 | 模型名称 | 模型表达式 | 模型特点 | 相关系数 | 与实际的吻合情况 | 结论 |
---|---|---|---|---|---|---|
生命模型: 适用于对生命总量有限体系(如矿产产量)的产生、发展和消亡过程的描述和预测 | 广义翁氏模型 | A类 非对称模型 | 0.041 | 预测最终探明储量远大于盆地资源量 | 不适用 | |
Logistic模型 | B类 对称模型 | 0.991 | 年探明储量随时间变化呈对称形态, 与实际不符 | 不适用 | ||
龚帕兹模型 | B类 非对称模型 | 0.995 | 与历史数据吻合好, 预测峰值储量合理 | 适用 | ||
胡-陈模型 | B类 非对称模型 | 0.985 | 与历史数据吻合差, 预测峰值储量低于多个历史数据, 不符合实际 | 不适用 | ||
胡-陈-张模型 | B类 非对称模型 | 0.994 | 与历史数据吻合好, 预测峰值储量合理 | 适用 | ||
随机模型: 盆地的年探明储量随时间的变化与一些随机分布的密度函数类似, 利用这些分布的密度函数就可以建立年探明储量与时间的关系模型 | 威布尔模型 | 既可表示为A类, 也可表示为B类非对称模型 | 0.97 | 与历史数据吻合差, 预测峰值 储量低于多个历史数据, 不符 合实际 | 不适用 | |
对数正态模型 | A类 非对称模型 | 0.751 | 与历史数据吻合差, 预测最终探明储量明显小于盆地资源量, 预测峰值储量低于多个历史数据, 不符合实际 | 不适用 | ||
瑞利模型 | 既可表示为A类, 也可表示为B类非对称模型 | 0.991 | 与历史数据吻合好, 预测峰值储量稍微偏低 | 适用 | ||
灰色系统模型: 针对非典型分布、非平稳过程和有色噪音, 用数据生成的方法整理数据, 将杂乱无章的数据整理成规律较强的数列 | 费尔哈斯模型 | 在盆地总地质资源量已知的情况下: | B类 对称模型 | 0.987 | 年探明储量随时间变化呈对称形态, 与实际不符 | 不适用 |
其他模型 | 递减曲线模型 | 有多种 | A类 单调递减 模型 | 适用于进入勘探后期储量发现逐年下降地区, 不适用于研究区 | 不适用 | |
油藏规模序列法、帚状模型 | 无法用一个关系式表达 | 需对储量数据作一些处理, 对数据要求较严格 | 在研究区应用, 未得到合理的 结果 | 不适用 |
注: Q代表年探明储量; t代表计算年度与勘探起始年度的差; S代表累计探明储量; R代表盆地总地质资源量; a、b和c表示参数。A类模型是指年探明储量与时间的关系模型; B类模型是指累计探明储量与时间的关系模型。模型特点一栏加粗字体描述的是年探明储量与时间的关系特点, 即非对称模型是指年探明储量随时间变化呈非对称形态 |
Fig. 7 The data building method — accumulation transforms the annual proven reserves that have bigger fluctuations into the cumulative proved reserves that have certain statistical law图7 累加的数据生成方式将波动较大的年探明储量(a)转变为具有一定规律性的累计探明储量(b) |
Fig. 8 The development tendency of proved reserves predicted by Logistic model (a), Rayleigh model (b) and H-C-Z model (c) in the study area图8 在研究区应用Logistic模型(a)、瑞利模型(b)和胡-陈-张模型(c)预测的探明储量发展趋势 |
Fig. 9 The development tendency of proved reserves predicted by Gompertz model in the study area图9 在研究区应用龚帕兹模型预测的探明储量发展趋势 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
/
〈 | 〉 |