利用Argo和Aquarius卫星观测研究热带南印度洋海表盐度的季节变化
作者简介:孙启伟(1993—), 男, 山东省枣庄市人, 硕士研究生, 研究方向: 物理海洋学, 海气相互作用。E-mail:sqw1993@163.com
收稿日期: 2017-01-02
要求修回日期: 2017-02-28
网络出版日期: 2017-07-26
基金资助
国家自然科学基金项目( 41525019、41506019)
国家海洋局“全球变化与海气相互作用”专项(GASI-IPOVAI-02)
热带海洋环境国家重点实验室(中国科学院南海海洋研究所)自主项目(LTOZZ1501)
Seasonal variability of sea surface salinity in tropical Southern Indian Ocean based on Argo and Aquarius observations
Received date: 2017-01-02
Request revised date: 2017-02-28
Online published: 2017-07-26
Supported by
National Natural Science Foundation of China (41525019, 41506019)
“Global Changes and air-sea interaction” of State Oceanic Administration (GASI-IPOVAI-02)
Independent Project of State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences) (LTOZZ1501)
Copyright
采用Argo以及Aquarius卫星观测的海表盐度月平均资料研究了热带南印度洋海表盐度的季节变化特征。结果表明, 在60°—80°E, 5°—15°S海域海表盐度具有显著季节变化特征; 夏半年盐度升高, 冬半年盐度降低; 但是其异常中心与降水异常中心不对应, 降水不能解释盐度的季节变化。盐度收支分析显示, 在夏半年, 海表盐度增加的主要原因是经向平流将赤道地区的高盐输送至该地区; 其中4—5月期间, 海洋垂向卷夹作用加强, 对海表高盐异常也起到重要作用。在冬半年, 大气降水增加, 海洋表层环流使得降水引起的局部低盐水体在该区域辐合; 同时, 向西的纬向平流将东南印度洋的低盐水体继续输送到该地区, 二者对冬半年海表盐度降低都有重要贡献。
孙启伟 , 杜岩 , 张玉红 . 利用Argo和Aquarius卫星观测研究热带南印度洋海表盐度的季节变化[J]. 热带海洋学报, 2017 , 36(4) : 25 -34 . DOI: 10.11978/2017002
Based on the monthly mean data of Argo and Aquarius satellite observations, we analyze the seasonal variation of sea surface salinity (SSS) in the tropical South Indian Ocean. The results show that the SSS has significant seasonal variation characteristics, that is, the SSS is lower in winter and higher in summer in the region of 60°-80°E, 5°-15°S. However, the center of anomalous SSS does not correspond to the center of anomalous precipitation. The seasonal variation of precipitation cannot explain the seasonal variation of SSS. Salinity budget analysis indicates that the ocean dynamics contribute to the seasonal variation of SSS. During the summer half of the year, the SSS increasing is attributed to the meridional advection transport high salinity from the equatorial region to the South Indian Ocean, as well as the entrainment strengthening from April to May. In the winter half of the year, precipitation increases, the northward currents transport low-salinity water induced by increasing precipitation to the study region, which favors the accumulation of low-salinity water in the region; at the same time, the westward zonal advection transports the low-salinity water from the Southeastern Indian Ocean to the west, both of which have important contributions to the decreasing SSS.
Fig. 1 Annual mean sea surface salinity (shading; units: psu) and freshwater flux (evaporation minus precipitation, contour; units: mm·d-1) of Argo (a) and Aquarius (b)图1 年平均海表盐度(填色)和淡水通量(蒸发减降水, 等值线, 单位: mm·d-1) a. Argo数据; b. Aquarius数据 |
Fig. 2 Seasonal standard deviation and first mode of sea surface salinity (shading; units: psu) and freshwater flux (contour; units: mm/day). a) Seasonal standard deviation of Argo; b) Seasonal standard deviation of Aquarius; c) the first mode for Argo; d) the first mode for Aquarius; e) time coefficient of the first mode for Argo; f) time coefficient of the first mode for Aquarius图2 海表盐度(填色)、淡水通量(等值线, 单位: mm·d-1)的季节标准差和EOF第一模态空间分布图及时间序列 a. Argo的季节标准差; b. Aquarius的季节标准差; c. Argo的EOF第一模态; d. Aquarius的EOF第一模态; e. Argo的EOF第一模态时间变化系数; f. Aquarius的EOF第一模态时间变化系数 |
Fig. 3 Spatial distribution of anomalous SSS (shading; units: psu), freshwater flux (contour; units: mm·d-1) and wind (vector; units: m·s-1). a) Anomalous SSS in March; anomalous freshwater flux and wind in January using Argo data. b) Same as a), except using Aquarius data. c) Anomalous SSS in August; anomalous freshwater flux and wind in June using Argo data. d) Same as c), except using Aquarius data图3 海表盐度异常(填色)、淡水通量异常(等值线, 单位: mm·d-1)以及风场异常(矢量, 单位: m·s-1)的空间分布图 a. 3月份Argo的海表盐度异常, 1月份淡水通量及风场异常; b. 3月份Aquarius的海表盐度异常, 1月份淡水通量及风场异常; c. 8月份Argo的海表盐度异常, 6月份淡水通量及风场异常; d. 8月份Aquarius的海表盐度异常, 6月份淡水通量及风场异常 |
Fig. 4 Latitude-time section of salt budgets using Argo and Aquarius data: a) salinity tendency; b) sum of horizontal (zonal & meridional) advection and entrainment; c) freshwater flux图4 Argo及Aquarius盐度收支方程的时间—纬度分布图 a、d为盐度变化率; b、e为平流及垂向卷夹之和; c、f为淡水通量; 其中a、b和c为Argo结果, d、e和f为Aquarius结果 |
Fig. 5 Seasonal variation of regionally averaged salt budgets using Argo and Aquarius data图5 Argo及Aquarius盐度收支区域平均的季节变化 S/t代表盐度月变化率, SUM (right)代表盐度收支方程右侧各项之和, Residual为残余项, S-adv代表平流及垂向卷夹之和, FWF代表淡水通量, S-advx、S-advy和S-advz分别代表纬向输送、经向输送和垂直项的输送; a、b、c为Argo数据; d、e、f 为Aquarius卫星数据 |
Fig. 6 Sketch of variation of anomalous SSS (shading), currents (vector) and precipitation (contour) of (a) winter and (b) summer图6 海表盐度异常(填色), 流场异常(矢量)、降水异常(等值线)示意图 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
/
〈 | 〉 |