海沟沉积物研究进展
作者简介:肖春晖(1991#cod#x02014;), 女, 山东省东营市人, 博士研究生, 海洋沉积学。E-mail: chunhuixiao@qq.com
收稿日期: 2017-01-23
要求修回日期: 2017-08-14
网络出版日期: 2018-01-18
基金资助
国家重点研发计划项目(2016YFC0402602)
国家自然科学基金(41376054、41176039、41410304022、91628301、U1606401)
国家海洋局公益性项目(201405037)
中国科学院项目(QYZDY-SSW-DQC005、Y4SL021001)
Research progress on ocean trench sedimentation
Received date: 2017-01-23
Request revised date: 2017-08-14
Online published: 2018-01-18
Supported by
National Key Research and Development Plan (2016YFC0402602)
National Natural Science Foundation of China (41376054, 41176039, 41410304022, 91628301, U1606401)
Public Welfare Project of the State Oceanic Administration (201405037)
Chinese Academy of Sciences Project (QYZDY-SSW-DQC005, Y4SL021001)
Copyright
俯冲的大洋板块在自身的重力以及上覆板块的挤压下, 下潜时牵引洋底向下倾伏, 从而形成了深邃的海沟。板块及其所携带的沉积物在这里俯冲到地幔深处, 构成了全球物质循环的重要部分。海沟地处极端环境, 海沟沉积物的沉积作用不同于陆架和浅海地区, 其物源和水动力基本控制了沉积模式, 但海沟沉积物的物源、沉积环境和沉积机理则更为复杂。海沟沉积物受控于各种类型的构造运动, 包括由上覆板块刮削下来的深海沉积物和洋壳碎片堆积而成的沉积增生楔; 由海沟重力滑塌、地震等因素引发的浊流沉积; 以及由火山活动带来的火山物质等。同时, 海沟沉积物也受控于海沟逐渐形成过程中和形成后的各种沉积作用, 例如生物化学沉积和漏斗效应。由于海沟沉积物的沉积过程受到漏斗效应的影响, 使得海沟沉积一般比深海盆地堆积速度更快, 堆积厚度也更大, 但在海沟的不同位置或不同海沟之间, 堆积厚度也会有所不同。海沟的这些沉积机理和沉积过程的差异, 影响了海沟沉积物的性质, 包括沉积物粒度、矿物、生物等都有所差异。文章根据海沟以上的沉积特点, 分析了不同海沟之间和同一海沟内部海沟沉积厚度以及沉积物的粒度特征、矿物组成和生物特征的差异, 并总结了海沟重力滑塌、浊流沉积、火山活动、生物化学沉积、漏斗效应这五种海沟沉积机理对海沟沉积物沉积过程的影响。文章最后展望了海沟沉积物的研究热点, 希望在此基础上促进海沟沉积物的进一步研究。
肖春晖 , 王永红 , 林间 . 海沟沉积物研究进展[J]. 热带海洋学报, 2017 , 36(6) : 27 -38 . DOI: 10.11978/2017012
Under its own gravitational weight and interaction with the overriding plate, a subducting oceanic plate bends significantly, leading to the formation of a deep trench. Here the subducted plate brings sediments into the mantle depths, constituting an important part of the global cycling of Earth materials. At the extreme environment of the deep ocean trench, the sedimentation processes differ significantly from that in a continental shelf or a shallow water zone. In general, the sediment provenances, environments, and mechanisms are much more complex at ocean trenches. Sediment sources at trenches are linked strongly to trench tectonics including, for example, the formation of accretionary wedges composing of deep sea sediments scraped off the overriding plate; turbidity deposits triggered by trench gravity sliding and seismic events; and volcanic deposits. Meanwhile, trench sediment is also controlled by other sedimentation mechanisms, including biochemical sedimentation and funneling effect. As a result of the funneling effect, trench sediment deposition rate is typically faster and thus thickness is greater than that at abyssal basins. Trench sediment thickness, however, varies significantly both within a trench and between trenches. The differences in the sedimentation mechanism and process affect the properties of trench sediments, including sediment grain-size, mineralogy, and biology. This paper examined intra- and inter-trenches variations in sediment thickness, grain-size, mineral composition, and biological characteristics. Several trench sedimentation mechanisms were examined, including gravity sliding, seismically-induced turbidity deposit, volcanic activity, biochemical sedimentation, and funneling effect. We also discussed the current research focuses in trench sedimentation research and the outlook of future investigations.
Fig. 1 Two types (A-A#cod#x02032;: Mariana type; B-B#cod#x02032;: Chile type) of active continental margins. Terrain data source: Becker et al (2009)图1 两种大陆活动边缘类型(A#cod#x02014;A#cod#x02032;: 马里亚纳型; B#cod#x02014;B#cod#x02032;: 智利型) 地形数据来源: Becker 等(2009) |
Fig. 2 Global distribution of trenches图2 全球海沟分布图 |
Fig. 3 Schematics of sedimentary types at different trenches (adapted from Scholl, 1974)图3 不同海沟内充填的沉积物类型示意图(改自Scholl, 1974) |
Table 1 Variation of median grain size with depth in trench sediments表1 海沟沉积物中值粒径随深度变化情况 |
水深/m | 沉积物中值粒径/#cod#x003bc;m | ||
---|---|---|---|
千岛海沟 (Itoh et al, 2011) | 马里亚纳海沟 (朱坤杰 等, 2015) | 秘鲁#cod#x02014;智利海沟 (Danovaro et al, 2002) | |
#cod#x0003C; 2000 | 16~54 | #cod#x02014; | 100~250 |
3000~5000 | 10~16 | 4~63 | #cod#x02014; |
#cod#x0003E; 5000 | <10 | #cod#x02014; | #cod#x02014; |
#cod#x0003E; 7000 | <5 | #cod#x02014; | 30 |
[1] |
|
[2] |
|
[3] |
CHEN ZHIHAO, WU NENGYOU, LI JIABIAO, 2010. Pathway of fluid migration for gas hydrate in the accretionary wedge of Manila Subduction Zone, Northeastern South China Sea[J]. Geoscience, 24(3): 441-449 (in Chinese).
|
[4] |
|
[5] |
FENG JUNXI, LUO MIN, HU YU, et al, 2016. Progress of the research on authigenic carbonates associated with oceanic serpentinization[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 35(4): 789-799 (in Chinese).
|
[6] |
|
[7] |
|
[8] |
|
[9] |
LIN MEIHUA, LI NAISHENG, 1998. On the structural landforms of the Ryukyu Trench[J]. Journal of Ocean University of QingDao, 28(3): 497-502 (in Chinese).
|
[10] |
LU XIAOZHEN, 1992. Authigenic minerals in a sediment column from the central pacific[J]. Marine Geology #cod#x00026; Quaternary Geology, 12(1): 67-72 (in Chinese).
|
[11] |
|
[12] |
|
[13] |
.
REN JIANYE, 2008. An introduction to ocean floor tectonics[M]. Wuhan: China University of Geosciences Press: 133-156 (in Chinese).
|
[14] |
SONG YONGDONG, MA XIAOCHUAN, ZHANG GUANGXU, et al, 2016. Heat flow in-situ measurement at yap trench of the western pacific[J]. Marine Geology #cod#x00026; Quaternary Geology, 36(4): 51-56 (in Chinese).
|
[15] |
WANG FENLIAN, HE GAOWEN, WANG HAIFENG, et al, 2016. Geochemistry of rare earth elements in a core from Mariana Trench and its significance[J]. Marine Geology #cod#x00026; Quaternary Geology, 36(4): 67-75 (in Chinese).
|
[16] |
|
[17] |
WANG HAIRONG, WANG YINGMIN, QIU YAN, et al, 2008a. Geomorphology and its control of deep-water slope of the margin of the South China Sea[J]. Acta Oceanologica Sinica, 30(2): 70-79 (in Chinese).
|
[18] |
WANG HAIRONG, WANG YINGMIN, QIU YAN, 2008b. Development and its tectonic activity#cod#x02019;s origin of turbidity current sediment wave in Manila Trench, the South China Sea[J]. Acta Sedimentologica Sinica, 26(1): 39-45 (in Chinese).
|
[19] |
WANG HAIRONG, WANG YINGMIN, QIU YAN, et al, 2009. The control of the multiple geomorphologic breaks on evolution of gravity flow dynamics in deep-water environment[J]. Acta Geologica Sinica, 83(6): 812-819 (in Chinese).
|
[20] |
WANG PINXIAN, 2009. Deep sea sediments and Earth system[J]. Marine Geology #cod#x00026; Quaternary Geology, 29(4): 1-10 (in Chinese).
|
[21] |
.
|
[22] |
XIAO RONGGE, LIU JINGDANG, FEI HONGCAI, et al, 2015. REE geochemical characteristics of sedimentary facies[J]. Advances in Geosciences, 5(3): 193-234 (in Chinese).
|
[23] |
XIAO YILIN, SUN HE, GU HAIOU, et al, 2015. Fluid/melt in continental deep subduction zones: Compositions and related geochemical fractionations[J]. Science China Earth Sciences, 58(9): 1457-1476 (in Chinese).
|
[24] |
HSIUNG K H, YU H S, 2012. Sediment dispersal system and transport from mountain source to oceanic sink off Southwestern Taiwan[J]. Mining and Metallurgical, (220): 7-15 (in Chinese).
|
[25] |
XIONG ZHIFANG, LI TIEGANG, ZHAI BIN, et al, 2010. Clay mineral characteristics of Ethmodiscus rex diatom mats from low-latitude Western Pacific during the last glacial and implications for their formation[J]. Earth Science#cod#x02014;Journal of China University of Geosciences, 35(4): 551-562 (in Chinese).
|
[26] |
|
[27] |
.
|
[28] |
ZHANG BIN, LI GUANGXUE, HUANG JIFENG, 2014. The tectonic geomorphology of the Philippine Sea[J]. Marine Geology #cod#x00026; Quaternary Geology, 34(2): 79-88 (in Chinese).
|
[29] |
.
|
[30] |
ZHANG JINPENG, DENG XIGUANG, YANG SHENGXIONG, et al, 2015. Diatom ooze found in 7000m submarine area of challenger depth in Mariana trench[J]. Geological Bulletin of China, 34(12): 2352-2354 (in Chinese).
|
[31] |
ZHANG JINPENG, DENG XIGUANG, ZHU BENDUO, et al, 2016. Diatom ooze from the surface sediments in the challenger deep of the Western Pacific Ocean[J]. Acta Micropalaeontologica Sinica, 33(1): 1-8 (in Chinese).
|
[32] |
ZHU JUNJIANG, QIU XUELIN, ZHAN WENHUAN, et al, 2005. Focal mechanism solutions and its tectonic significance in the trench of the Eastern South China Sea[J]. Acta Seismologica Sinica, 27(3): 260-268 (in Chinese).
|
[33] |
ZHU KUNJIE, HE SHUPING, CHEN FANG, et al, 2015. Engineering geological characteristics and genesis of the sediments from the Southern Mariana Trench[J]. Journal of Geology, 39(2): 251-257 (in Chinese).
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
.HOPKIN M, (2005-02-03) [2016-12-13]. Muddy microbes retrieved from the abyss[EB/OL].
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
.
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
/
〈 |
|
〉 |