南海北部反气旋涡旋边缘的次中尺度动力过程分析
作者简介:郑瑞玺(1993─), 男, 浙江江山市人, 硕士研究生, 主要从事上层海洋次中尺度过程研究。E-mail: zhengruixi15@mails.ucas.edu.cn
收稿日期: 2017-07-14
要求修回日期: 2017-09-18
网络出版日期: 2018-05-03
基金资助
国家自然科学基金项目(41776040、41230962)
热带海洋环境国家重点实验室自主研究项目(LTOZZ1701)
Analysis of sub-mesoscale dynamic processes in the periphery of anticyclonic eddy in the northern South China Sea
Received date: 2017-07-14
Request revised date: 2017-09-18
Online published: 2018-05-03
Supported by
National Natural Science Foundation of China (41776040, 41230962)
Foundation of State Key Laboratory of Tropical Oceanography (LTOZZ1701).
Copyright
广泛存在于上层海洋的次中尺度过程能有效地从平衡态的中尺度地转剪切中汲取动能, 并通过非地转斜压不稳定正向串级能量至小尺度的耗散过程, 从而对海洋物质能量输运、中尺度过程变异以及混合层再层化等产生重要影响。文章利用高分辨率(500m)的区域海洋数值模式ROMS(Regional Ocean Modeling System)模拟结果, 并结合理论分析, 对南海北部冬季典型反气旋涡的次中尺度动力过程进行了初步探讨。研究结果表明, 典型中尺度涡边缘存在显著的锋面, 锋面海域强烈的水平浮力梯度能有效地减小Ertel位涡, 有利于诱发次中尺度对称不稳定(symmetric instability); 锋生作用是引起该中尺度涡边缘发生对称不稳定的主要动力机制之一。同时, 次中尺度过程及其不稳定引起的垂向次级环流显著增强了混合层垂向物质能量交换, 最大垂向速度可达95m·d-1, 影响深度最深至80m。
郑瑞玺 , 经志友 , 罗士浩 . 南海北部反气旋涡旋边缘的次中尺度动力过程分析[J]. 热带海洋学报, 2018 , 37(3) : 19 -25 . DOI: 10.11978/2017079
Mesoscale energy can be effectively extracted from geostrophic flows via sub-mesoscale processes and forward cascade to smaller dissipation scales. These ubiquitous sub-mesoscale processes in the upper ocean play an important role in the transport of mass and energy, mesoscale variability and re-stratification of mixed layer. Using the high-resolution (500-m) ROMS results, we preliminarily analyze the sub-mesoscale dynamic processes of typical anticyclonic eddy in the northern South China Sea in winter. Our results show that the strong lateral buoyancy gradient at eddy periphery can efficiently reduce the Ertel potential vorticity of the front, which exacerbates frontal instabilities and is favorable for the development of symmetric instability (SI). In this case, one of the most important mechanisms is the frontogenesis for the generation of frontal SI. Furthermore, sub-mesoscale processes and associated instabilities can trigger a strong vertical secondary circulation across the front. The vertical velocity is up to 95 m·d-1, suggesting significant vertical exchanges of mass and energy in the mixed layer.
Fig. 1 Spatial distribution of the mean eddy kinetic energy in the South China Sea based on the daily AVISO SLA data of winters (Dec., Jan., Feb.) from 2005 to 2015. Topography is shown by the gray isobaths at 200, and 1500 m, respectively图1 2005—2015年冬季南海平均涡动能空间分布 |
Fig. 2 Topography of the South China Sea used in the first nested model domain. Gray isobaths show the depth at 200, and 1500 m, respectively. The online second nested domain is delineated by the black box图2 南海海底地形与第一层模式嵌套区域 |
Fig. 3 Spatial distribution of the Rossby number with horizontal velocity (vector) at 5-m depth in the northern South of China Sea. Topography is shown by the black isobaths at 200 and 1500 m, respectively. The black box denotes the eddy region图3 南海北部( |
Fig. 4 Horizontal distribution of potential density with horizontal velocity (vector) at 5-m depth in the mesoscale eddy. Topography is shown by the black thick isobaths at 200 and 1500 m, respectively. The black box denotes the front region图4 中尺度涡旋区域5m层位势密度水平分布 |
Fig. 5 Spatial structure of Okubo-Weiss parameter (a) and frontal sharpness (b) at 5-m depth in the front. Topography is shown by the black isobath at 1500 m图5 锋面区域5m层Okubo-Weiss参数(a)和锋面强度(b)水平分布 |
Fig. 6 Horizontal (a) and across-front (b) distributions of EPV. (a) The vectors show the horizontal velocity at 5-m depth. The region of -90°<ϕRi<-45° is denoted by the thin gray contours. Topography is shown by the thick black isobaths at 200 and 1500 m, respectively. The across-front section is indicated by the pink line. (b) Density is shown by the black contours图6 Ertel位涡5m层水平分布(a)和跨锋面垂向分布(b) |
Fig. 7 Frontal spatial distribution of vertical velocity w′ at 50-m depth (a), and cross-front structure of vertical secondary circulation (b). Topography is shown by black isobaths of 1500 m in (a). (b) The along-front velocity u′ (shading) is positive for westward velocity. The vectors show lateral velocity v′ (m·s-1) and vertical velocity w′ (m·d-1). Potential density is denoted by black contours图7 锋面50m层垂向速度(a)和跨锋面垂向次级环流(b) |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
/
〈 | 〉 |