收稿日期: 2009-05-06
修回日期: 2009-11-18
网络出版日期: 2010-03-23
基金资助
中国科学院重要方向性项目及装备项目(KZCW2-YW-215); 国家863计划重大项目(2006AA09A310); 国家自然科学
基金-广东省自然科学基金联合资助项目(U0933005)
Hyperspectral monitoring and early warning for algal blooms
Received date: 2009-05-06
Revised date: 2009-11-18
Online published: 2010-03-23
有害赤潮发生频度有逐年增加的趋势, 建设赤潮的早期监测和预警系统是一个难点。文章研究表明, 珠江口赤潮前后, 叶绿素a浓度和细胞密度变化范围分别为0.9—31.1mg•m-3 和1.28×104 —1.76×106cell•L-1, 优势藻为聚生角毛藻; 高光谱辐射计获取的光漫射衰减系数、遥感反射率和荧光强度可反演叶绿素a浓度和细胞密度, 其中反演叶绿素a浓度的平均相对均方根差(RRMS)为30.6%、33.8%和77.4%, 而反演细胞密度的平均RRMS为83.6%、83.9%和136.4%。因高光谱辐射计可以获取每小时或者更短时间尺度的数据, 因此, 装备了高光谱辐射计的光学浮标可用于赤潮监测与预警系统。
曹文熙,杨跃忠,王桂芬,赵俊,周雯,李彩,孙兆华,梁少君,柯天存,卢桂新 . 赤潮的高光谱监测及预警方法[J]. 热带海洋学报, 2010 , 29(2) : 17 -24 . DOI: 10.11978/j.issn.1009-5470.2010.02.017
Harmful algal blooms have increased in recent years, and the building of early observing and monitoring system is very difficult. The authors indicated in this paper that, during the experimental time in the Pearl River Estuary, the variations of chlorophyll a and cell density were 0.9-31.1mg•m-3 and 1.28×104-1.76×106cell•L-1, respectively, and diatom was the dominant algal species. The diffuse attenuation coefficient, remotely sensed reflectance and fluorescence obtained by hyperspectral radiometers can be used to retrieve chlorophyll a and cell density, with relative root mean square error (RRMS) of chlorophyll a of 26.1%, 25.2% and 54.6%, and RRMS of cell density of 64.5%, 65.6% and 60.8%, respectively. Since the hyperspectal radiometers can obtain data at 1 hour interval, the moored optical buoy equipment with hyperspectral radiometers can be used for algal bloom observation and monitoring system.
Key words: ocean optics; optical buoy; observation and monitoring; algal bloom
[1] STUMPF R.P, CULVER M E, TESTER P A, et al. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data [J]. Harmful Algae,. 2003, 2(2): 147-160.
[2] MILLIE D F, SCHOFIELD O, KIRKPATRICK G J, et al. Detection of harmful algal blooms using photopigments and absorption signature: A case study of the Florida red tide dinoflagellate [J]. Limnol Oceanogr, 1997, 42: 1240-1251.
[3] CULLEN J J, CIOTT A M I, DAVIS R F, et al. Optical detection and assessment of algal blooms [J]. Limnol Oceanogr, 1997, 42: 1223-1239.
[4] TESTER P A, STUMPF R P. Phytoplankton blooms and remote sensing: What is the potential for early warning [J]. Journal of Shellfish Research, 1998, 17(5): 1469-1471.
[5] SCHOFIELD O, BISSETT G J, KIRKPATRICK P, et al. Optical monitoring and forecasting systems for harmful algal blooms: Possibility or pipe dream?[J]. J Phycology, 1999, 35(6 supp.): 1477-1496.
[6] ANTOINE D, D’ORTENZIO F, HOOKER S B, et al. Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project)[J]. J Geophys Res, 2008, 113: doi: 10.1029/2007JC004472.
[7] CLARK D K, YARBROUGH M A, FEINHOLZ M, et al. MOBY, A Radiometric Buoy for Performance Monitoring and Vicarious Calibration of Satellite Ocean Color Sensors: Measurement and Data Analysis Protocols[S]. Ocean optics protocols for satellite ocean color sensor validation. 2003, Rev. 4, Vol. VI, NASA Tech. Memo. 2003-211621, NASA GSFC, Greenbelt, MD, 141 pp.
[8] PINKERTON M H, LAVENDER S J, AIKEN J. Validation of SeaWiFS ocean color satellite data using moored data buoy[J]. J Geophys Res, 2003, 108: doi: 10.1029/2002JC001337.
[9] TANG D L, KESTER D R, NI I-HSUN, et al. In situ and satellite observations of a harmful algal bloom and water condition at the Pearl River estuary in late autumn 1998[J]. Harmful Algae, 2003, 2: 89-99.
[10] YIN K D, ZHANG J L, QIAN P Y, et al. Effect of wind events on phytoplankton blooms in the Pearl River estuary during summer [J]. Continental Shelf Research, 2004, 24: 1909-1923.
[11] MOREL A, GENTILI B. Diffuse reflectance of oceanic waters. II. Bidirectional aspects [J]. Appl Opt, 1993, 32: 6864-6879.
[12] Gordon H R, Ding K. Self-shading of in-water optical instruments[J]. Limnol Oceanogr 1992, 37: 491-500.
[13] Baker K S, Smith R C. Irradiance transmittance through the air-water interface [M] //SPINRAD R W, Ocean Optics X. Proc SPIE, 1990, 1302, 556-565.
[14] HUOT Y, BROWN C A, CULLEN J J. Retrieval of phytoplankton biomass from simultaneous inversion of reflectance, the diffuse attenuation coefficient, and Sun-induced fluorescence in coastal waters[J]. J of Geophys Res, 2007,112, C06013.
[15] ZHAO J, CAO W X, YANG Y Z, et al. Measuring natural phytoplankton fluorescence and biomass: A case study of algal bloom in the Pearl River estuary [J]. Marine Pollution Bulletin, 2008, 56: 1795-1801.
[16] KIRKPATRICK G J, ORRICO C, MOLINE M A, et al. Continuous hyper spectral absorption measurements of colored dissolved organic material in aquatic systems[J]. Applied Optics, 2003, 42: 6564-6568.
[17] MOREL A, MARITORENA S. Bio-optical properties of oceanic waters: a reappraisal[J]. Journal of Geophysical Research, 2001, 106 : 7163-7180.
[18] DIERSSEN H M, KUDELA R M, RYAN J P, et al. Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments[J]. Limnol Oceanogr, 2006, 51(6): 2646-2659.
[19] GILERSON A, ZHOU J, HLAING S, et al. Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition [J]. Optics Express, 2007, 15(24): 15702-15721.
[20] BABIN M, MOREL A, GENTILI B. Remote sensing of sea surface sun-induced chlorophyll fluorescence: Consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence [J]. Int J Remote Sensing, 1996, 17: 2417-2448.
[21] MCKEE D, CUNNINGHAM A, WRIGHT D, et al. Potential impacts of non-algal materials on water-leaving Sun-induced chlorophyll fluorescence signals in coastal waters[J]. Applied Optics, 2007, 46: 7720-7729.
/
〈 | 〉 |