收稿日期: 2009-05-06
修回日期: 2009-01-28
网络出版日期: 2010-03-23
基金资助
中国科学院知识创新工程重要方向项目(KZCX2-YW-215); 国家自然科学基金青年项目(40906021, 4090622, U0933005);
中科院南海海洋研究所青年人才领域前沿项目(SQ200812)
Retrieval of phytoplankton size structure based on the spectral slope of phytoplankton absorption in the northern South China Sea
Received date: 2009-05-06
Revised date: 2009-01-28
Online published: 2010-03-23
浮游植物的粒级结构是一个重要的生物参数。基于南海北部海区不同水体环境下测量的生物光学数据, 作者深入研究了粒级结构对浮游植物吸收光谱的影响。结果表明, 选择443和510nm波段计算得到的浮游植物光谱斜率S对粒级结构的变化具有较高的敏感性, 其随着小型浮游植物比例的增大呈不断增加的趋势。S与水体叶绿素a浓度、浮游植物吸收系数(aph(443))之间表现出明显的正相关特征。以40%为界对不同粒级浮游植物的优势进行定义, 发现在S与叶绿素a浓度、aph(443)的关系分布中小型(Micro)和微微型(Pico)浮游植物占据优势的水体表现出较为明显的分界, 叶绿素a浓度和aph(443)分别在0.70mg•m-3和0.05m-1附近, 相应的S在0.0004(m•nm)-1左右。基于实测数据建立的遥感反射率蓝绿波段比值与S之间的统计关系, 决定系数高达0.91, 为从水色遥感数据反演浮游植物粒级结构提供了重要手段。
王桂芬,曹文熙,周雯,梁少君,杨跃忠,赵俊, . 基于南海北部海区浮游植物吸收光谱斜率变化的粒级结构反演[J]. 热带海洋学报, 2010 , 29(2) : 25 -32 . DOI: 10.11978/j.issn.1009-5470.2010.02.025
Phytoplankton size structure is an important biological parameter that governs functioning of pelagic food-webs and consequently affects the rate of carbon cycle. Relationships between spectral phytoplankton absorption (aph(λ)) and phyto-plankton size structure were investigated based on in situ data collected in the northern South China Sea. The spectral slope of phytoplankton absorption in the range of 443 and 510 nm was used as an index (S) for describing phytoplankton size classes, which tended to increase with increasing dominant roles of large-sized phytoplankton. There existed positive correlations be-tween S and phytoplankton absorption coefficient and chlorophyll a concentration, which were then discussed by considering size-fractioned chlorophyll a contribution. Taking 40% as the cutoff, relatively clear division between pico- and mi-cro-phytoplankton dominated waters was found, with chlorophyll a concentration of ~0.70 mg•m-3 and aph(443) of ~0.05 m-1, and accordingly the value of S being around 0.0004 (m•nm)-1. A bio-optical model was developed between S and blue-to-green band ratio of remote sensing reflectance (Rrs(443)/Rrs(555 )), which showed good correlations with R2 being about 0.91. This model pro-vided much insight into the retrieval of phytoplankton size structure from ocean color remote sensing.
[1] 宁修仁. 海洋微型和微微型浮游生物[J]. 东海海洋, 1997, 15(3): 60–64.
[2] MONTES-HUGO M A, VERNET M, MARTINSON D, et al. Variability on phytoplankton size structure in the western Antarctic Peninsula (1997– 2006)[J]. Deep-Sea Research II, 2008, 55: 2106–2117.
[3] BRICAUD A, MOREL A, BABIN M, et al. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and impli-cations for bio-optical models [J]. Journal of Geophysical Research, 1998, 103: 1033–31044.
[4] BRICAUD A, CLAUSTRE H, RAS J, et al. Natural variabil-ity of phytoplanktonic absorption in oceanic waters: Influ-ence of the size structure of algal populations [J]. Journal of Geophysical Research, 2004, 109, C11010.
[5] WOZNIAK S B, STRAMSKI D. Modeling the optical prop-erties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms[J]. Applied Optics, 2004, 43: 3489–3503.
[6] ZHOU W, CAO W X. Modelling the influence of mineral particles and phytoplankton on chlorophyll estimation from ocean colour remote sensing[J]. International Journal of Remote Sensing, 2008, 29(21): 6237–6248.
[7] BRICAUD A, MEJIA C, BLONDEAU-PARISSIER D, et al. Retrieval of pigment concentrations and size structure of algal populations from their absorption spectra using multilayered perceptrons[J]. Applied Optics, 2007, 46(8): 1251–1260.
[8] CIOTTI A M, MARLON M R, CULLEN J J. Assessment of the relationship between dominant cell size in natural phyto-plankton communities and the spectral shape of the absorp-tion coefficient [J]. Limnology and Oceanography, 2002, 47: 404–417.
[9] CIOTTI A M, BRICAUD A. Retrievals of a size parameter for phytoplankton and spectral light absorption by Colored Detrital Matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil [J]. Limnol-ogy and Oceanography Methods, 2006, 4: 237–253.
[10] HIRATA T, AIKEN J, HARDMAN-MOUNTFORD N et al. An absorption model to determine phytoplankton size classes from satellite ocean colour [J]. Remote Sensing of Environ-ment, 2008,112: 3153–3159.
[11] AIKEN J, FISHWICK J R, LAVENDER S, et al. Validation of MERIS reflectance and chlorophyll during the BENCAL cruise October, 2002: Preliminary validation of new demon-stration products for phytoplankton functional types and photosynthetic parameters [J]. International Journal of Re-mote Sensing, 2007, 28: 497−516.
[12] AIKEN J, HARDMAN-MOUNTFORD N, BARLOW R, et al. Functional links between bioenergetics and bio-optical traits of phytoplankton taxonomic groups: An overarching hypothesis with applications for ocean color remote sensing [J]. Journal of Plankton Research, 2008, 30(2): 165–181.
[13] WANG P, BOSS E, ROESLER C. Uncertainties of inherent optical properties obtained from semi-analytical inversions of ocean color [J]. Applied Optics, 2005, 44: 4074–4085.
[14] EISNER L B, TWARDOWSKI M S, COWLES T J. Re-solving phytoplankton photoprotective: photosynthetic caro-tenoid ratios on fine scales using in situ spectral absorption measurements[J]. Limnology and Oceanography, 2003, 48(2): 632–646.
[15] IOCCG. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applica-tions[R]//LEE Z. P. Reports of the International Ocean-Colour Coordinating Group, No. 5, IOCCG, 2006, Dartmouth, Canada.
[16] CAO W X, YANG Y Z, LIU S, et al. Absorption coefficients of phytoplankton in relation to chlorophyll and remote sens-ing reflectance in the coastal waters of Southern China[J]. Progress in Natural Science, 2005, 15(4): 342–350.
[17] CAO W X, YANG Y Z, XU X Q, et al. Regional patterns of particulate spectral absorption in the Pearl River estuary [J]. Chinese Science Bulletin, 2003, 48(21): 2344–2351.
[18] 王桂芬, 曹文熙, 许大志, 等. 南海北部水体浮游植物比吸收系数的变化[J]. 热带海洋学报, 2005, 24(5): 1–10.
[19] 王桂芬, 曹文熙, 许大志, 等. 南海北部藻类粒级结构及色素成分对浮游植物吸收系数的影响[J]. 海洋学报, 2007, 29(1): 38–48.
[20] MITCHELL G, BRICAUD A, CARDER K L, et al. Deter-mination of spectral absorption coefficients of particles, dis-solved material, and phytoplankton for discrete water sam-ples[R]// FARGION G S, MUELLER J L. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revi-sion 2, NASA/TM 2000-209966. NASA Goddard Space Flight Center, Greenbelt, Maryland, 2000, p125–153.
[21] ROESLER C S. Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique [J]. Limnology and Oceanography, 1998, 43: 1649–1660.
[22] 许大志, 曹文熙, 王桂芬. 南海北部水体叶绿素a浓度反演的生物光学模型[J]. 热带海洋学报, 2007, 26(2): 15–21.
[23] MUELLER J L, FARGION G S, MCCLAIN C R et al. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Proper-ties: Instruments, Characterization, Field Measurements and Data Analysis Protocols[R]. Greenbelt, Md, 2003, p39.
[24] 杨跃忠, 曹文熙, 孙兆华, 等. 海洋高光谱辐射实时观测系统的研制[J]. 光学学报, 2009, 29(1): 102–107.
[25] 王桂芬, 曹文熙, 杨跃忠, 等. 珠江口藻华水体总吸收系数的变化特性及高光谱反演模式[J]. 热带海洋学报, 2010, 29(2).
[26] PARSONS T R, MAITA Y, LALLI C M. A Manual Of Chemical And Biological Methods For Seawater Analysis [M]. Oxford: Pergamon Press, 1984.
/
〈 |
|
〉 |