海洋光学

细胞结构对浮游植物光学特性的影响

展开
  • 1.中国科学院南海海洋研究所热带海洋环境动力学重点实验室, 广东 广州 510301; 2. 中国科学院研究生院, 北京 100039
周雯(1982—), 女, 湖南省邵阳市人, 助理研究员, 主要从事海洋光学的研究。

收稿日期: 2009-05-06

  修回日期: 2009-11-10

  网络出版日期: 2010-03-23

基金资助

中国科学院重要方向性项目(KZCX2-YW-215); 国家自然科学基金项目(40906022; 40906021; 40606011,U0933005)

Effects of algal cell structure on the optical properties of phytoplankton

Expand
  • 1. LED, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 2. Graduate Univ. of Chinese Academy of Sciences, Beijing 10039, China

Received date: 2009-05-06

  Revised date: 2009-11-10

  Online published: 2010-03-23

摘要

藻细胞抽象为细胞质和叶绿体构成的两层球体结构, 结合Aden-Kerker散射理论, 分析了藻细胞各物理属性对其光学特性的影响, 同时也与均匀球体藻细胞的光学特性进行了对比分析。分析结果表明, 与均匀球体结构相比, 叶绿体为外裹层的细胞结构将显著增强其后向散射效率及后向散射比率, 而叶绿体为内核层的细胞结构因打包效应将削弱藻细胞的吸收效率; 当叶绿体为外裹层时, 细胞粒径大小、叶绿体相对体积、叶绿体复折射率的虚部都对藻细胞的吸收效率会产生显著影响; 同时, 细胞粒径大小和叶绿体复折射率实部是决定细胞后向散射效率和后向散射比率的两个重要指标。

本文引用格式

周雯,曹文熙,李彩,王桂芬,孙兆华,赵俊, . 细胞结构对浮游植物光学特性的影响[J]. 热带海洋学报, 2010 , 29(2) : 33 -38 . DOI: 10.11978/j.issn.1009-5470.2010.02.033

Abstract

The algal cells were first simplified as two-layer structure consisting of cytoplasm and chloroplast, and based on Aden-Kerker theory, the influence of physical properties of algal cells on their optical properties was then discussed. The results were also compared with the optical properties of homogenous spherical algal cells. They showed that, compared to homogenous spherical cell structure, the cell structures with chloroplast as outer would enhance the backscattering efficiency factor and backscattering ratio, while the cell structure with chloroplast as core would reduce the absorption efficiency due to package efficiency; For the algal cells with chloroplast as outer, the variations of cell size, relative chloroplast volume and the imaginary part of refractive index of chloroplast would have important influence on absorption efficiency of algae; both cell size and the real part of refractive index of chloroplast were the two key factors for backscattering efficiency and backscattering ratio of algae.

参考文献

[1] MOBLEY C D, SUNDMAN L K, BOSS E. Phase Function Effects on Oceanic Light Fields[J]. Appl Opt, 2002, 41: 1035-1050.

[2] LEE Z P, ARNONE R, BABIN M, et al. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms and Application[C]. No.5, IOCCG, Dartmouth, Canada. 2006.

[3] SUBRAMANIAM A, CARPENTER E J, FALKOWSKI P G. Bio-optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. II. A reflectance model for remote sensing[J].  Limnol Oceanogr, 1999, 44(3): 618-627.

[4] MONTES-HUGO M A, VERNET M, SMITH R, et al. Phytoplankton size-structure on the western shelf of the Antarctic Peninsula: A remote-sensing approach[J]. Int J Remote Sensing, 2008, 29(3): 801-829.

[5] QUIRANTES A, BERNARD S. Light scattering by marine algae: Two-layer spherical and non-spherical modes[J]. J Quant Spectrosc Radiat Transfer, 2004, 89(1-4): 311-321.

[6] MOREL A, BRICAUD A. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton[J]. Deep-Sea Res, 1981, 28(11): 1375-1393.

[7] 周雯, 曹文熙, 李彩. 浮游植物吸收和散射特性: 理论模型[J]. 光学技术, 2007, 33(2): 177-180.

[8] BRICAUD A, MOREL A. Light attenuation and scattering by phytoplanktonic cells: A theoretical modeling[J]. Appl Opt, 1986, 25: 571-580.

[9] STRAMSKI D, BRICAUD A, MOREL A. Modeling the light attenuation and scattering by spherical phytoplankton cells: a retrieval of the bulk refractive index[J]. Appl Opt, 1988, 27: 3954-3956.

[10] 周雯, 曹文熙, 李彩, 等. 由吸收系数及粒度分布计算浮游植物的散射光谱特性[J]. 光学学报, 2008, 28(8): 1429-1433.

[11] STRAMSKI D, MOREL A. Optical properties of photosynthetic picoplankton in different physiological states as affected by growth irradiance[J]. Deep-Sea Res, 1990, 37(2): 245-266.

[12] Stramski D, Reynolds R A. Diel variations in the optical properties of a marine diatom[J]. Limnol Oceanogr, 1993, 38(7): 1347-1364.

[13] STRAMSKI D, ROSENBERG G, LEGENDRE L. Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface wave focusing[J]. Marine Biology, 1993, 115(3): 363-372.

[14] REYNOLDS R A, STRAMSKI D, KIEFER D A. The effect of nitrogen-limitation on the absorption and scattering properties of the marine diatom Thalassiosira pseudonana[J]. Limnol Oceanogr, 1997, 42(5): 881-892.

[15] STRAMSKI D, SCIANDRA A, CLAUSTRE H. Variations in the optical properties of the marine diatom Thalassiosira pseudonana induced by various sources of growth limitation[J]. Limnol Oceanogr, 2002, 47(2): 392-403.

[16] STRAMSKI D, KIEFER D A. Light scattering by microorganisms in the open ocean[J]. Progress in Oceanography, 1991, 28(4): 343-383.

[17] STRAMSKI D, BOSS E D, BOGUCKI, et al. The role of seawater constituents in light backscattering in the ocean[J]. Progress in Oceanography, 2004, 61, 27-56.

[18] STRAMSKI D, MOBLEY C D. Effects of microbial particles on oceanic optics: A database of single-particle optical properties[J]. Limnol Oceanogr, 1997, 42(3): 538-549.

[19] MOBLEY C D, STRAMSKI D. Effects of microbial particles on oceanic optics: Methodology for radiative transfer modeling and example simulations[J]. Limnol Oceanogr, 1997, 42(3): 550-560.

[20] BRICAUD A, BEDHOMME A L, MOREL A. Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation[J]. J Plankton Res, 1988, 10(5): 851-873.

[21] VAILLANCOURT R D, BROWN C W, GUILLARD R R L, et al. Light backscattering properties of marine phytoplankton: relationships to cell size chemical composition and taxonomy[J]. J Plankton Res, 2004, 26(2): 191-212.

[22] VOLTEN H, HAAN J F DE, HOVENIER J W, et al. Laboratory Measurements of Angular Distributions of Light Scattered by Phytoplankton and Silt[J]. Limnol Oceanogr, 1998, 43(6): 1180-1197.

[23] QUINBY-HUNT M S, HUNT A J, LOFFTUS K, et al. Polarized-light scattering studies of marine Chlorella[J]. Limnol Oceanogr, 1989, 34(8): 1587-1600.

[24] BOHREN C F, HUFFMAN D R. Absorption and scattering of light by small particles[M]. Wiley New York. 1983.

[25] AAS E. Refractive index of phytoplankton derived from its metabolite composition[J]. J Plankton Res, 1996, 18(12), 2223-2249.

[26] BRICAUD A, ZANEVELD J R, KITCHEN J C. Backscattering efficiency of cocoolithophorids: use of a three-layered sphere model[J]. Ocean OpticsXI. Proc SPIE, 1992, 1750: 27-33.

[27] KITCHEN J C, ZANEVELD R J V. A Three-Layered Sphere Model of the Optical Properties of Phytoplankton[J]. Limnol Oceanogr, 1992, 37(8): 1680-1690.

[28] ANDERSSON P O, GILLBRO T, FERGUNSON L, et al. Absorption spectral shift of carotenoids related to medium polarizability[J]. Photochem Photobiol, 1991, 54: 353-360.

[29] PAILLOTIN G, LEIBL W, GAPINSKI J, et al. Light gradients in spherical photosynthetic vesicles[J]. Biophys J, 1998, 75: 124-133.

[30] GRUSZECKI W I, GRUDZINSKI W, BANASZEK-GLOS A, et al. Xanthophyll pigments in light harvesting complex II in monomolecular layers: localisation, energy transfer and orientation[J]. Biochim Biophys Acta, 1999, 1412: 173-183.

[31] GEIDER R J, OSBORNE B A. Light absorption by a marine diatom: experimental observations and theoretical calculations of the package effect in a small Thalassiosira species[J]. Mar. Biol, 1987, 96(2): 299-308.

[32] BERNARD S. The bio-optical detection of harmful algal blooms[D]. University of Cape Town, 2005.

文章导航

/