2016年夏季南海海盆水体颗粒物粒径分布特征*
作者简介:郑文迪(1992—), 女, 广东省中山市人, 硕士研究生, 主要从事海洋光学研究。E-mail: wendizheng@scsio.ac.cn
收稿日期: 2018-02-08
要求修回日期: 2018-04-09
网络出版日期: 2018-10-13
基金资助
国家自然科学基金(41576030, 41431176, 4176045, 4176044, 41376042)
热带海洋环境国家重点实验室自主研究项目(LTOZZ1602)
广州市科技计划重点项目(201504010034, 201707020023, 201607020041)
广东省科技计划重点项目(2016A020222008)
中科院A类先导专项(XDA11040302)
Characterization of particle size distribution in the South China Sea basin during summer 2016
Received date: 2018-02-08
Request revised date: 2018-04-09
Online published: 2018-10-13
Supported by
National Natural Science Foundation of China (41576030, 41431176, 4176045, 4176044, 41376042)
Open Research Program of the State Key Laboratory of Tropical Oceanography (LTOZZ1602)
Science and Technology Program of Guangzhou, China (201504010034, 201707020023, 201607020041)
Science and Technology Planning Project of Guangdong Province of China (2016A020222008)
Strategic Priority Programme of the Chinese Academy of Sciences (XDA11040302)
Copyright
颗粒物粒径分布(Particle Size Distribution, PSD)代表了颗粒物浓度与颗粒物粒径之间的关系, 影响着海洋生态环境和水体光学特性等。文章基于2016年夏季航次调查的生物光学剖面数据, 研究了南海海盆海域PSD的分布特征。研究发现, 幂律函数可以较好地拟合南海海盆区域的PSD, 对数空间中的实测的PSD与模拟的PSD平均决定系数高达0.95。PSD斜率(ξ)的分布范围为[1.27, 7.65], 均值为3.93±0.56。南海海盆区域表层水体的ξ均值与全球大洋表层水体的ξ均值相近, 但高于海湾等表层水体的ξ均值。ξ能较好地表征颗粒物平均粒径DA的大小, 两者存在明显负相关关系, 即ξ值越高, DA越小; 反之, DA越大。通过分析T1断面的生物光学剖面数据及总体平均的PSD剖面数据, 发现PSD剖面分布特征如下: 1)表层水体的ξ值相对较高, 且DA值相对较低, 推测可能是由于微微型藻类为主导颗粒物所致; 2) ξ值极小值层出现在次表层叶绿素浓度极大值层(Subsurface Chlorophyll Maximum Layer, SCML)中, 并伴随DA极大值层的出现, 其原因可能是SCML中的大粒径浮游植物占比显著增加; 3)弱光层中的ξ值较SCML中的高, 但略低于表层的ξ值, 而DA则位于表层与SCML的DA之间, 这可能与浮游植物及其碎屑的絮凝、分解、沉降等过程相关。PSD特征影响着海水的固有光学特性, 分析发现: 由于SCML中的叶绿素浓度增加, 颗粒物散射系数(bp(532))和颗粒物后向散射系数(bbp(532))也相应呈现显著增加的趋势。弱光层中的平均bp(532)与平均bbp(532)最小。ξ与颗粒物衰减光谱斜率之间呈高分散性,
郑文迪 , 周雯 , 曹文熙 , 王桂芬 , 邓霖 , 徐文龙 , 许占堂 , 李彩 , 蔡建南 . 2016年夏季南海海盆水体颗粒物粒径分布特征*[J]. 热带海洋学报, 2018 , 37(5) : 74 -85 . DOI: 10.11978/2018017
Particle size distribution (PSD) describes the relationship between particle concentration and particle size, influencing marine ecosystem environment, the optical properties of sea water, and so on. Based on the in-situ profiles of biological and optical properties during summer 2016 in the South China Sea basin, characterization of PSD was studied. The power-law model was fit to describe the PSD, and the results indicated that the mean coefficient of determination between in-situ PSD and simulated PSD could reach 0.95 in the logarithmic space. The PSD slope (ξ) ranged in [1.27, 7.65] with a mean of 3.93±0.56. The mean of ξ in the surface water of the South China Sea basin was similar to the mean of ξ in global ocean surface water, but higher than that in the surface water of other areas such as the bay. There was a strong negative relationship between ξ and the mean diameter (DA). Taking section T1 as an example, we analyzed the mean PSD profile of these stations. The features of PSD profiles are as follows. 1) At the surface, there were high values of ξ with low values of DA because the dominate particle was pico-phytoplankton. 2) The minimum value of ξ appeared in the subsurface chlorophyll maximum layer (SCML) with higher DA, which may result from the higher proportion of big phytoplankton. 3) In the twilight layer, the values of ξ as well as the values of DA were between those at the surface and in the SCML. This phenomenon may be related to the process of flocculation, decomposition, and settlement of phytoplankton. The traits of PSD would influence the inherent optical properties (IOP) of seawater. We found that both particulate beam scattering coefficient at 532 nm (bp(532)) and particulate beam backscattering coefficient at 532 nm (bbp(532)) would be higher in the SCML because of the increasing chlorophyll-a concentration. However, the lowest mean bp(532) and the lowest mean bbp(532) were found in the twilight layer. Furthermore, although the relationship between ξ and the particulate beam attenuation sepctral slope was weak, the model of
Fig. 1 The optical survey stations in the South China Sea basin during summer 2016图1 2016年南海海盆光学调查站位图 |
Fig. 2 The power-law relationship between the line height absorption at 676 nm (aLH(676)) and in-situ Chl-a. The sample number is 85. The black curve is the fitting of this study图2 吸收线性高度aLH(676)与实测Chl a的幂指数关系 |
Tab. 1 The standard of water stratification表1 分层标准 |
ζ值范围 | 分层 |
---|---|
小于0.5 | 表层 |
[0.5, 1.3] | SCML |
大于1.3 | 弱光层 |
Fig. 3 The modeling performance of PSD in the South China Sea basin using the power-law model (a) and mean absolute percent errors (MAPE,%) in the modeled PSD (b) for total dataset and three water layers图3 南海海盆区域总体及各水层PSD幂律模型拟合效果(a)和平均相对误差绝对值(MAPE,%)随粒径变化的关系图(b) |
Fig. 4 Distribution of total ξ (a), distributions of ξ in three water layers (b) and the relationship between total ξ and DA (c). (a) The black curve is the Gaussian fitting curve. (b) The black curve represents ξ in the surface layer (N=881). The blue curve represents ξ in the SCML (N=1422). The red curve represents ξ in the twilight layer (N=2573). (c) The black curve represents the power-law fitting curve of ξ and DA图4 南海海盆总体ξ值的分布情况(a)、三个水层的ξ值分布情况(b)和总体ξ值与DA的关系(c) |
Tab. 2 Ranges of ξ in different regions表2 不同海区的ξ值分布情况 |
海域 | ξ值分布范围 | ξ值平均值(±方差) | 参考文献 | |
---|---|---|---|---|
哈德逊湾 | 表层 | 2.84~4.46 | 3.63(±0.40) | Xi et al, 2014 |
黄、渤海 | 表层 | 2.72~4.46 | 3.64(±0.38) | Qiu et al, 2016 |
美国东西海岸及南大洋的大西洋区域 | 表层 | 2.7~4.7 | 3.63 | Buonassissi et al, 2010 |
全球大洋(遥感反演) | 表层 | 3.04~5.99 | 4.22(±0.59) | Kostadinov et al., 2009 |
南海中部 | 表层 | 2.65~6.88 | 4.54(±0.62) | 本文 |
SCML | 1.27~7.65 | 3.57(±0.55) | ||
弱光层 | 2.67~4.90 | 3.92(±0.30) | ||
总体 | 1.27~7.65 | 3.93(±0.56) |
Tab. 3 The statistical table of distributions of DA, CHLLH, $\bar{n}\text{p}$, and inherent optical parameters表3 DA、CHLLH、$\bar{n}\text{p}$及固有光学参数的分布范围统计表 |
参数 | 单位 | 个数 | 平均值 | 最大值 | 最小值 | 标准差 | 变异系数 | |
---|---|---|---|---|---|---|---|---|
DA | μm | 表层 | 881 | 7.78 | 123.56 | 3.23 | 9.56 | 122.89 |
SCML | 1422 | 25.97 | 166.07 | 3.23 | 24.34 | 93.72 | ||
弱光层 | 2573 | 14.36 | 111.10 | 7.22 | 9.03 | 62.91 | ||
剖面 | 4876 | 16.56 | 166.07 | 3.23 | 16.57 | 100.07 | ||
CHLLH | mg·m -3 | 表层 | 647 | 0.17 | 0.32 | 0.03 | 0.06 | 35.71 |
SCML | 1289 | 0.26 | 0.44 | 0.11 | 0.06 | 24.63 | ||
弱光层 | 730 | 0.15 | 0.33 | 0.02 | 0.05 | 36.38 | ||
剖面 | 2666 | 0.21 | 0.44 | 0.02 | 0.08 | 37.6 | ||
$\bar{n}_{p}$ | 无 | 表层 | 621 | 1.01 | 1.05 | 1.002 | 0.009 | 0.87 |
SCML | 1282 | 1.03 | 1.16 | 1.005 | 0.024 | 2.34 | ||
弱光层 | 639 | 1.06 | 1.22 | 1.004 | 0.044 | 4.13 | ||
剖面 | 2542 | 1.03 | 1.22 | 1.002 | 0.033 | 3.2 | ||
cp(530) | m-1 | 表层 | 647 | 0.24 | 0.41 | 0.059 | 0.078 | 32.02 |
SCML | 1289 | 0.20 | 0.45 | 3.46×10-3 | 0.084 | 41.92 | ||
弱光层 | 730 | 0.08 | 0.19 | 5.36×10-4 | 0.046 | 59.01 | ||
剖面 | 2666 | 0.18 | 0.45 | 5.36×10-4 | 0.098 | 54.88 | ||
γ | 无 | 剖面 | 585 | 0.86 | 1.13 | 0.39 | 0.12 | 14.14 |
bp(532) | m-1 | 表层 | 647 | 0.24 | 0.41 | 0.062 | 0.078 | 32.17 |
SCML | 1289 | 0.20 | 0.45 | 6.15×10-3 | 0.084 | 41.85 | ||
弱光层 | 730 | 0.08 | 0.19 | 2.87×10-4 | 0.047 | 59.53 | ||
剖面 | 2666 | 0.18 | 0.45 | 2.87×10-4 | 0.097 | 54.86 | ||
bbp(532) | m-1 | 表层 | 928 | 6.37×10-4 | 1.13×10-3 | 3.8×10-4 | 8.84×10-5 | 13.88 |
SCML | 1427 | 6.59×10-4 | 1.08×10-3 | 3.45×10-4 | 1.17×10-4 | 17.67 | ||
弱光层 | 2616 | 4.13×10-4 | 1.33×10-3 | 1.75×10-4 | 1.00×10-4 | 24.25 | ||
剖面 | 4971 | 5.25×10-4 | 1.33×10-3 | 1.75×10-4 | 1.57×10-4 | 29.95 | ||
$\widetilde{b}_{bp}$ | 无 | 表层 | 628 | 0.0031 | 0.01 | 0.0012 | 0.001 | 48.38 |
SCML | 1289 | 0.0042 | 0.11 | 0.0013 | 0.004 | 98.85 | ||
弱光层 | 729 | 0.0148 | 0.56 | 0.0022 | 0.038 | 260.28 | ||
剖面 | 2646 | 0.0069 | 0.56 | 0.0012 | 0.021 | 306.24 |
变异系数=100%×标准差/平均值 |
Fig. 5 The vertical profiles of bio-optical and hydrological parameters along section T1. a) CHLLH; b) potential density; c) ξ; d) DA; e) bbp(532); f) bp(532). The white solid line represents the depth of maximum CHLLH图5 T1断面生物光学参数及水文参数的剖面等值线分布图 |
Fig. 6 The mean vertical profiles of DA, ξ, and CHLLH in the South China Sea basin. The standard deviation of ξ is displayed for every 0.1 ζ图6 南海海盆DA、ξ与CHLLH平均剖面图 |
Fig. 7 Relationship between γ and ξ (a), and the distribution of in-situ ξ and modeled ξ (b). The selected data should match the following conditions: (1) PSD and cp(λ) power-law function fitting R2 are both greater than 0.9; (2) the range of ξ is [2.5, 5], and the range of $\bar{n}\text{p}$is [1.02, 1.2]. The model of ξ is ξ=γ+3-0.5exp(-6γ)图7 γ与ξ的关系(a)和实测与估算的ξ值分布范围(b) |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
/
〈 | 〉 |