海洋生物学

三种常见原生动物对褐潮藻种抑食金球藻(Aureococcus anophagefferens)的摄食

  • 陈瑶 ,
  • 杨茜露 ,
  • 何学佳
展开
  • 暨南大学赤潮与海洋生物学研究中心, 水体富营养化与赤潮防治广东普通高校重点实验室, 广东 广州 510632
陈瑶(1992—), 女, 湖北省天门市人,硕士, 主要从事浮游动物生态化学计量学和营养生理生态方面的研究。E-mail: chenyao_008@sina.com

收稿日期: 2017-12-13

  网络出版日期: 2018-12-24

基金资助

广东省自然科学基金项目(2017A030313217);中央高校基本科研业务费专项资金(21617450);国家海洋公益性行业科研专项(201305003)

Grazing of three common protozoan on brown tide alga Aureococcus anophagefferens

  • CHEN Yao ,
  • YANG Xilu ,
  • HE Xuejia
Expand
  • Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China

Received date: 2017-12-13

  Online published: 2018-12-24

Supported by

Natural Science Foundation of Guangdong Province (2017A030313217);Fundamental Research Funds for the Central Universities (21617450);National Marine Public Welfare Industry Research Project (201305003)

摘要

微型浮游动物在抑食金球藻(Aureococcus anophagefferens)引发褐潮时表现的摄食压力可潜在控制褐潮的爆发和消亡。本研究就三种海洋常见原生动物——海洋尖尾藻(Oxyrrhis marina)、海洋尾丝虫(Uronema marinum)和扇形游仆虫(Euplotes vannus)——对单种饵料及混合饵料中抑食金球藻中国株的摄食进行了研究。单种抑食金球藻指数期细胞喂食的三种原生动物的生长率和摄食率呈现米氏方程变化趋势。比较三种原生动物摄食抑食金球藻的最大摄食率, 发现其随动物粒径的增大而增大, 但仅为摄食球等鞭金藻(Isochrysis galbana)的30%~59%。海洋尖尾藻和海洋尾丝虫的最大生长率(μmax)与饵料种类无关, 扇形游仆虫摄食抑食金球藻时的μmax值小于摄食球等鞭金藻的个体。海洋尖尾藻、海洋尾丝虫和扇形游仆虫摄食抑食金球藻时的毛生长率(gross growth efficiency, GGE)分别为65.8%、35.2%和49.1%。三种原生动物摄食抑食金球藻指数期细胞和球等鞭金藻以不同比例混合的饵料时表现出对抑食金球藻的选择倾向; 在含有抑食金球藻稳定期细胞的混合饵料喂食的情况下, 三种原生动物避食抑食金球藻或不表现明显摄食倾向性。抑食金球藻释放胞外聚合物(extracellular polymeric substance, EPS)的测定结果显示, 细胞从指数期生长至稳定期释放出的EPS的水平显著上升(P<0.05), 可能与原生动物对不同生长期藻细胞具有不同选择偏好有关。

本文引用格式

陈瑶 , 杨茜露 , 何学佳 . 三种常见原生动物对褐潮藻种抑食金球藻(Aureococcus anophagefferens)的摄食[J]. 热带海洋学报, 2018 , 37(6) : 120 -132 . DOI: 10.11978/2017130

Abstract

With the increase of marine plastic waste, marine microplastics have attracted more and more attention as a new type of marine pollution. At present, studies of the source, distribution and analytical approach of microplastics are well recognized. Most research focuses on plastic ingestion by marine organisms, and on the effects of microplastics adsorbing and releasing toxic chemicals. However, the role of microplastics as a vector for pelagic microorganism, phytoplankton and micozooplankton is poorly understood. In this review, we address three functions of microplastics as a biological vector. 1) Aggregation, it is easy for biofilms to form a microbial community on the surface of microplastics, which provide the means for horizontal transfer of organisms and genes, and may lead to the transformation or transduction of pathogenic gene, antibiotic resistance gene (ARGs), called genetic exchange. 2) Dispersal, the spread of harmful algal species, pathogenic bacteria and drug-resistant bacteria as well as other microorganisms may happen when the microplastics are freshly from the waste water flow, which potentially poses a risk of invasion when arriving in a new habitat with favorable condition. 3) A feeding enhancement concept, we propose this concept because a piece of microplastics is full of the attached biofilms, nutrients and organisms, which may attract large grazers or predators and can also improve their predation efficiency. As a result, these grazers/predators may seek pieces of microplastic as foods, which may cause more serious toxicological effects. The review focuses on the ecological effects of “microplastic + biology”.

参考文献

[1] 公晗, 颜天, 周名江, 2014. 褐潮藻Aureococcus anophagefferens的危害研究进展[J]. 海洋科学, 38(6): 78-84.
GONG HAN, YAN TIAN, ZHOU MINGJIANG, 2014. Advance in study of the impacts of Aureococcus anophagefferens[J]. Marine Sciences, 38(6): 78-84 (in Chinese with English abstract).
[2] 雷蕾, 姚鹏, 2016. 抑食金球藻褐潮环境影响因素研究进展[J]. 海洋环境科学, 35(4): 635-640.
LEI LEI, YAO PENG, 2016. Advances in the environmental factors of brown tide of Aureococcus anophagefferens[J]. Marine Environmental Science, 35(4): 635-640 (in Chinese with English abstract).
[3] 乔玲, 甄毓, 米铁柱, 2016. 抑食金球藻(Aureococcus anophagefferens)褐潮研究概述[J]. 海洋环境科学, 35(3): 473-480.
QIAO LING, ZHEN YU, MI TIEZHU, 2016. Review of the brown tides caused by Aureococcus anophagefferens[J]. Marine Environmental Science, 35(3): 472-480 (in Chinese with English abstract).
[4] 宋广军, 宋轮, 王年斌, 等, 2014. 褐潮研究现状[J]. 河北渔业, (9): 61-64.
SONG GUANGJUN, SONG LUN, WANG NIANBIN, et al, 2014. The present research status of brown tide[J]. Hebei Fisheries, (9): 61-64 (in Chinese with English abstract).
[5] 宋伦, 吴景, 宋永刚, 等, 2017. 褐潮致灾种抑食金球藻在辽东湾的分布[J]. 环境科学研究, 30(4): 537-544.
SONG LUN, WU JING, SONG YONGGANG, et al, 2017. Distribution of brown tide species Aureococcus anophagefferens in Liaodong Bay[J]. Research of Environmental Sciences, 30(4): 537-544 (in Chinese with English abstract).
[6] BERNARD C, RASSOULZADEGAN F, 1990. Bacteria or microflagellates as a major food source for marine ciliates: possible implications for the microzooplankton[J]. Marine Ecology Progress Series, 64: 147-155.
[7] BRECKELS M N, ROBERTS E C, ARCHER S D, et al, 2011. The role of dissolved infochemicals in mediating predator-prey interactions in the heterotrophic dinoflagellate Oxyrrhis marina[J]. Journal of Plankton Research, 33(4): 629-639.
[8] BRICELJ V M, FISHER N S, GUCKERT J B, et al, 1989. Lipid composition and nutritional value of the brown tide alga Aureococcus anophagefferens[M]//COSPER E M, BRICELJ V M, CARPENTER E J. Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Berlin, Heidelberg: Springer: 85-100.
[9] BRICELJ V M, LONSDALE D J, 1997. Aureococcus anophagefferens: causes and ecological consequences of brown tides in U.S. mid-Atlantic coastal waters[J]. Limnology and Oceanography, 42(5 Part2): 1023-1038.
[10] BRUSSAARD C P D, MARIE D, THYRHAUG R, et al, 2001. Flow cytometric analysis of phytoplankton viability following viral infection[J]. Aquatic Microbial Ecology, 26(2): 157-166.
[11] BUSKEY E J, HYATT C J, 1995. Effects of the Texas (USA) ‘brown tide’ alga on planktonic grazers[J]. Marine Ecology Progress Series, 126: 285-292.
[12] BUSKEY E J, MONTAGNA P A, AMOS A F, et al, 1997. Disruption of grazer populations as a contributing factor to the initiation of the Texas brown tide algal bloom[J]. Limnology and Oceanography, 42(5 Part2): 1215-1222.
[13] CARON D A, GOBLER C J, LONSDALE D J, et al, 2004. Microbial herbivory on the brown tide alga, Aureococcus anophagefferens: results from natural ecosystems, mesocosms and laboratory experiments[J]. Harmful Algae, 3(4): 439-457.
[14] CARON D A, LIM E L, KUNZE H, et al, 1989. Trophic interactions between nano- and microzooplankton and the “brown tide”[M]//COSPER E M, BRICELJ V M, CARPENTER E J. Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Berlin, Heidelberg: Springer: 265-294.
[15] CAVANAUGH G M, 1956. Formulae and methods of the marine biological laboratory chemical room[M]. 6th ed. Woods Hole, Massachusetts: Marine Biological Laboratory: 67-69.
[16] DEMOTT W R, WATSON M D, 1991. Remote detection of algae by copepods: responses to algal size, odors and motility[J]. Journal of Plankton Research, 13(6): 1203-1222.
[17] DEONARINE S N, GOBLER C J, LONSDALE D J, et al, 2006. Role of zooplankton in the onset and demise of harmful brown tide blooms (Aureococcus anophagefferens) in US mid-Atlantic estuaries[J]. Aquatic Microbial Ecology, 44: 181-195.
[18] DEUER S M, GRÜNBAUM D, 2006. Individual foraging behaviors and population distributions of a planktonic predator aggregating to phytoplankton thin layers[J]. Limnology and Oceanography, 51(1): 109-116.
[19] DODGE J D, CRAWFORD R M, 1971. Fine structure of the dinoflagellate Oxyrrhis marina. II. The flagellar system[J]. Protistologica, 7: 399-409.
[20] DODGE J D, CRAWFORD R M, 1974. Fine structure of the dinoflagelate Oxyrrhis marina III. Phagotrophy[J]. Protistologica, 10: 239-244.
[21] EVANS C, KADNER S V, DARROCH L J, et al, 2007. The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: an Emiliania huxleyi culture study[J]. Limnology and Oceanography, 52(3): 1036-1045.
[22] EVANS C, MALIN G, MILLS G P, et al, 2006. Viral infection of Emiliania huxleyi (Prymnesiophyceae) leads to elevated production of reactive oxygen species[J]. Journal of Phycology, 42(5): 1040-1047.
[23] EVANS C, WILSON W H, 2008. Preferential grazing of Oxyrrhis marina on virus infected Emiliania huxleyi[J]. Limnology and Oceanography, 53(5): 2035-2040.
[24] FENCHEL T, 1980. Suspension feeding in ciliated protozoa: functional response and particle size selection[J]. Microbial Ecology, 6(1): 1-11.
[25] FLYNN K J, DAVIDSON K, CUNNINGHAM A, 1996. Prey selection and rejection by a microflagellate; implications for the study and operation of microbial food webs[J]. Journal of Experimental Marine Biology and Ecology, 196(1-2): 357-372.
[26] FROST B W, 1972. Effects of size and concentration of food particles on the Feeding behavior of the marine planktonic copepod Calanus pacificus[J]. Limnology and Oceanography, 17(6): 805-815.
[27] GENTLEMAN W, LEISING A, FROST B, et al, 2003. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 50(22-26): 2847-2875.
[28] GOBLER C J, DEONARINE S, LEIGH-BELL J, et al, 2004. Ecology of phytoplankton communities dominated by Aureococcus anophagefferens: the role of viruses, nutrients, and microzooplankton grazing[J]. Harmful Algae, 3(4): 471-483.
[29] GOBLER C J, RENAGHAN M J, BUCK N J, 2002. Impacts of nutrients and grazing mortality on the abundance of Aureococcus anophagefferens during a New York brown tide Bloom[J]. Limnology and Oceanography, 47(1): 129-141.
[30] HANSEN F C, WITTE H J, PASSARGE J, 1996. Grazing in the heterotrophic dinoflagellate Oxyrrhis marina: size selectivity and preference for calcified Emiliania huxleyi cells[J]. Aquatic Microbial Ecology, 10(3): 307-313.
[31] HANSEN P J, BJØRNSEN P K, HANSEN B W, 1997. Zooplankton grazing and growth: Scaling within the 2-2, -μm body size range[J]. Limnology and Oceanography, 42(4): 687-704.
[32] HEINBOKEL J F, 1978. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures[J]. Marine Biology, 47(2): 177-189.
[33] IVLEV V S, 1961. Experimental ecology of the feeding of fishes[M]. New Haven: The University Press of Yale.
[34] JACOBS J, 1974. Quantitative measurement of food selection: a modification of the forage ratio and Ivlev's electivity index[J]. Oecologia, 14(4): 413-417.
[35] JEONG H J, KANG H, SHIM J H, et al, 2001. Interactions among the toxic dinoflagellate Amphidinium carterae, the heterotrophic dinoflagellate Oxyrrhis marina, and the calanoid copepods Acartia spp.[J]. Marine Ecology Progress Series, 218: 77-86.
[36] JEONG H J, KIM J S, YOO Y D, et al, 2003. Feeding by the heterotrophic dinoflagellate Oxyrrhis marina on the red-tide raphidophyte Heterosigma akashiwo: a potential biological method to control red tides using mass-cultured grazers[J]. Journal of Eukaryotic Microbiology, 50(4): 274-282.
[37] JEONG H J, SEONG K A, YOO Y D, et al, 2008. Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria[J]. Journal of Eukaryotic Microbiology, 55(4): 271-288.
[38] JEONG H J, YOO Y D, KIM J S, et al, 2004. Feeding by the marine planktonic ciliate Strombidinopsis jeokjo on common heterotrophic dinoflagellates[J]. Aquatic Microbial Ecology, 36(2): 181-187.
[39] JONSSON P R, 1986. Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina)[J]. Marine Ecology Progress Series, 33: 265-277.
[40] JONSSON P R, TISELIUS P, 1990. Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates[J]. Marine Ecology Progress Series, 60: 35-44.
[41] KANG Y, KOCH F, GOBLER C J, 2015. The interactive roles of nutrient loading and zooplankton grazing in facilitating the expansion of harmful algal blooms caused by the pelagophyte, Aureoumbra lagunensis, to the Indian River Lagoon, FL, USA[J]. Harmful Algae, 49: 162-173.
[42] KELLER M D, BELLOWS W K, GUILLARD R R L, 1989. Dimethylsulfide production and marine phytoplankton: an additional impact of unusual blooms[M]//COSPER E M, BRICELJ V M, CARPENTER E J. Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Berlin, Heidelberg: Springer: 101-105.
[43] LIU H B, BUSKEY E J, 2000a. The exopolymer secretions (EPS) layer surrounding Aureoumbra lagunensis cells affects growth, grazing, and behavior of protozoa[J]. Limnology and Oceanography, 45(5): 1187-1191.
[44] LIU HONGBIN, BUSKEY E J, 2000b. Hypersalinity enhances the production of extracellular polymeric substance (EPS) in the Texas brown tide alga, Aureoumbra lagunensis (Pelagophyceae)[J]. Journal of Phycology, 36(1): 71-77.
[45] LONSDALE D J, COSPER E M, KIM W S, et al, 1996. Food web interactions in the plankton of Long Island bays, with preliminary observations on brown tide effects[J]. Marine Ecology Progress Series, 134: 247-263.
[46] MALEJ A, HARRIS R P, 1993. Inhibition of copepod grazing by diatom exudates: a factor in the development of mucus aggregates?[J]. Marine Ecology Progress Series, 96: 33-42.
[47] MARTEL C M, 2006. Prey location, recognition and ingestion by the phagotrophic marine dinoflagellate Oxyrrhis marina[J]. Journal of Experimental Marine Biology and Ecology, 335(2): 210-220.
[48] MEHRAN R, 1996. Effects of Aureococcus anophagefferens on microzooplankton grazing and growth rates in the Peconic Bays system, Long Island, NY[D]. New York: State University of New York at Stony Brook.
[49] MENDEN-DEUER S, LESSARD E J, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton[J]. Limnology and Oceanography, 45(3): 569-579.
[50] PASSOW U, ALLDREDGE A L, 1995. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP)[J]. Limnology and Oceanography, 40(7): 1326-1335.
[51] PASSOW U, ALLDREDGE A L, 1999. Do transparent exopolymer particles (TEP) inhibit grazing by the euphausiid Euphausia pacifica?[J]. Journal of Plankton Research, 21(11): 2203-2217.
[52] PROBYN T, PITCHER G, PIENAAR R, et al, 2001. Brown tides and mariculture in Saldanha Bay, South Africa[J]. Marine Pollution Bulletin, 42(5): 405-408.
[53] ROBERTS E C, WOOTTON E C, DAVIDSON K, et al, 2011. Feeding in the dinoflagellate Oxyrrhis marina: linking behaviour with mechanisms[J]. Journal of Plankton Research, 33(4): 603-614.
[54] SIEBURTH J M, JOHNSON P W, 1989. Picoplankton ultrastructure: A decade of preparation for the brown tide alga, Aureococcus anophagefferens[M]//COSPER E M, BRICELJ V M, CARPENTER E J. Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Berlin, Heidelberg: Springer: 1-21.
[55] SMAYDA T J, 2008. Complexity in the eutrophication-harmful algal bloom relationship, with comment on the importance of grazing[J]. Harmful Algae, 8(1): 140-151.
[56] TUORTO S J, TAGHON G L, 2014. Rates of benthic bacterivory of marine ciliates as a function of prey concentration[J]. Journal of Experimental Marine Biology and Ecology, 460: 129-134.
[57] TURLEY C M, NEWEL R C, ROBINS D B, 1986. Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions[J]. Marine Ecology Progress Series, 33: 59-70.
文章导航

/