基于地统计学南海北部近海竹荚鱼空间分布特征
作者简介:晏然(1993—), 男, 河南省信阳市人, 硕士研究生, 研究方向: 渔业资源空间分析。E-mail: harbinyanran@qq.com
收稿日期: 2018-01-17
网络出版日期: 2018-12-24
基金资助
国家公益性行业(农业)科研专项(201403008);中国水产科学研究院基本科研业务费资助(2017HY-ZD0804);农业部财政专项“南海北部近海渔业资源调查”(2014—2018)
Spatial distribution of jack mackerel (Trachurus japonicus) in the northern South China Sea based on geostatistics
Received date: 2018-01-17
Online published: 2018-12-24
Supported by
Special Fund for Agroscientific Research in the Public Interest (201403008);Chinese Academy of Fishery Sciences Fundamental Research Funding (2017HY-ZD0804);Ministry of Agriculture's special financial item “Investigation of Offshore Fishery Resources in the northern South China Sea” (2014—2018)
Copyright
竹荚鱼(Trachurus japonicus)是我国南海北部近海主要渔获物之一。根据2014—2017年对南海北部开展的8个航次近海渔业资源和环境调查数据, 采用地统计学方法分析竹荚鱼时空分布特征和相关生态动力过程。结果表明, 竹荚鱼总体布局以低密度为主, 高密度海域较少, 季节性集聚特征明显, 依次为夏季>春季>秋季>冬季。竹荚鱼空间分布具有极强的空间异质性, 空间结构性比例均在75%以上, 变异模型以高斯模型为主, 空间相关距离(变程)大约在0.52°左右, 且季节性特征明显。对地统计参数值和单位捕捞努力量(catch per unit effort, CPUE)的相关关系研究发现, 竹荚鱼资源密度越大, 空间异质性特征越明显。通过统计各向分维值分析竹荚鱼各向异质性特征, 发现西北—东南向的空间异质性较为显著, 表明该方向的海洋动力过程将对竹荚鱼洄游分布产生重要影响。此外, 基于克里格插值分析, 发现竹荚鱼呈西南—东北向洄游分布规律, 空间布局呈片状和斑块状, 且易受极端气候(厄尔尼诺和拉尼娜等事件)影响。
晏然 , 范江涛 , 徐珊楠 , 许友伟 , 孙铭帅 , 陈作志 . 基于地统计学南海北部近海竹荚鱼空间分布特征[J]. 热带海洋学报, 2018 , 37(6) : 133 -139 . DOI: 10.11978/2018012
Jack mackerel (Trachurus japonicus) is one of the main catches in the northern South China Sea. Based on the survey data of the North China Coastal Fishery Resources Survey (2014-2017) in the South China Sea, we used geostatistics to explore the spatial and temporal distribution characteristics of jack mackerel and related eco-dynamic processes. The results showed that the overall spatial distribution of jack mackerel was mainly associated with low resource density and less high density of resources. The characteristics of seasonal aggregation are obvious and as follows: summer> spring> autumn> winter. We found that the spatial distribution had a strong heterogeneity, and the proportion of spatial structure was above 75%. The spatial variability was dominated by Gaussian distribution, and the spatial correlation distance (variation range) was about 0.52° with obvious seasonal characteristics. Through the research on the correlation between geostatistical parameter values and catch per unit effort (CPUE), we found that the greater the resource density of jack mackerel, the more obvious the spatial heterogeneity was. Through the heterogeneity analysis in all directions, we found that the spatial heterogeneity in the northwest-southeast direction was significant, indicating that the marine dynamic process in this direction had a significant impact on the migration and distribution of jack mackerel. In addition, based on the Kriging interpolation analysis of the spatial distribution of jack mackerel, we found that jack mackerel had a pattern of migratory distribution from southwest to northeast, which had obvious characteristics of patchy distribution. Jack mackerel was also susceptible to extreme climate (El Nino, La Nina, and other extreme events).
Fig. 1 South China Sea offshore fishing resources survey site map图1 南海北部近海渔业资源调查站点图 |
Tab. 1 K-S normality test of each cruise表1 各航次数据K-S正态性检验 |
航次 | 季节 | 时间 | P值 | 转换后P值 |
---|---|---|---|---|
1 | 夏季 | 2014年7—8月 | 0.00 | 0.43 |
2 | 秋季 | 2014年10—11月 | 0.00 | 0.38 |
3 | 冬季 | 2015年1—2月 | 0.00 | 0.21 |
4 | 春季 | 2015年4—5月 | 0.00 | 0.08 |
5 | 夏季 | 2016年7—8月 | 0.00 | 0.20 |
6 | 秋季 | 2016年10—11月 | 0.00 | 0.25 |
7 | 冬季 | 2017年1—2月 | 0.00 | 0.35 |
8 | 春季 | 2017年4—6月 | 0.00 | 0.10 |
注: P值大于0.05, 该组数据具备正态特征 |
Tab. 2 Basic statistical parameters of the survey data of jack mackerel表2 竹荚鱼调查数据基本统计参数 |
年份 | 航次 | 季节 | 最小值 | 最大值 | 均值 | 标准差 | 偏度 | 峰度 | Cv=S/m | S2/m |
---|---|---|---|---|---|---|---|---|---|---|
2014—2015 | 1 | 夏季 | 0.01 | 259.3 | 10.9 | 30.5 | 6.7 | 52.1 | 2.8 | 85.3 |
2 | 秋季 | 0.01 | 44.0 | 2.5 | 5.9 | 5.9 | 41.0 | 2.4 | 13.9 | |
3 | 冬季 | 0.04 | 10.5 | 1.3 | 2.3 | 2.5 | 5.5 | 1.8 | 4.1 | |
4 | 春季 | 0.03 | 96.0 | 2.8 | 10.6 | 8.2 | 72.4 | 3.8 | 40.1 | |
2016—2017 | 5 | 夏季 | 0.01 | 260.0 | 17.4 | 38.1 | 4.7 | 25.4 | 2.1 | 83.4 |
6 | 秋季 | 0.03 | 41.7 | 3.0 | 5.8 | 5.1 | 30.9 | 1.9 | 11.2 | |
7 | 冬季 | 0.01 | 9.5 | 1.3 | 1.9 | 2.4 | 6.7 | 1.5 | 2.8 | |
8 | 春季 | 0.01 | 46.5 | 3.6 | 7.5 | 3.9 | 16.5 | 2.2 | 15.6 |
Tab. 3 Variation function parameters of jack mackerel resources in each cruise表3 各航次竹荚鱼资源变异函数参数 |
年份 | 航次 | 季节 | 模态 | 最优模型 | 块金值C0 | 基台值C0+C | 结构比例C/(C0+C) | 变程 |
---|---|---|---|---|---|---|---|---|
2014—2015 | 1 | 夏季 | N | 高斯模型 | 0.14 | 0.80 | 0.83 | 0.47° |
2 | 秋季 | N | 高斯模型 | 0.08 | 0.53 | 0.84 | 0.68° | |
3 | 冬季 | N | 球形模型 | 0.04 | 0.43 | 0.91 | 0.6° | |
4 | 春季 | E | 高斯模型 | 0.31 | 0.67 | 0.54 | 0.81° | |
2016—2017 | 5 | 夏季 | L | 指数模型 | 0.12 | 0.78 | 0.84 | 0.54° |
6 | 秋季 | L | 高斯模型 | 0.04 | 0.27 | 0.84 | 0.26° | |
7 | 冬季 | N | 球形模型 | 0.01 | 0.42 | 0.99 | 0.27° | |
8 | 春季 | N | 高斯模型 | 0.14 | 0.79 | 0.83 | 0.49° |
注: E表示厄尔尼诺事件, L表示拉尼娜事件, N表示正常周期 |
Fig. 2 Fractal dimension value of CPUE in each cruise图2 各航次CPUE各向分维值 |
Fig. 3 Relationship between CPUE and sill in each cruise图3 各航次CPUE与基台值的关系 |
Fig. 4 Relationship between CPUE and N135° fractal dimension value in each cruise图4 各航次CPUE和N135°分维值的关系 |
Fig. 5 Distribution of spatial heterogeneity of jack mackerel in each cruise图5 各航次近海竹荚鱼空间异质性结构分布图 |
Fig. 6 Nino3.4 index analysis of each cruise图6 各航次Nino3.4分析 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
The habitate sutibility index of Chilean jack mackerel in the South-East Pacific[D]. Shanghai: Shanghai Ocean University: 1-67 (in Chinese with English abstract).
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
/
〈 | 〉 |