海洋光学

珠江口藻华水体总吸收系数的变化特性及高光谱反演模式

展开
  • 1. 中国科学院南海海洋研究所 LED实验室, 广东 广州 510301; 2. 中国科学院研究生院, 北京100039
王桂芬(1981—), 女, 山东省聊城市人, 助理研究员, 主要从事海洋生物光学和水色遥感研究。

收稿日期: 2009-05-06

  修回日期: 2009-12-15

  网络出版日期: 2010-03-23

基金资助

中国科学院知识创新工程重要方向项目(KZCX2-YW-215); 国家863计划(2006AA09A310); 国家自然科学基金项目(40906021,
4090622,U0933005); 中国科学院南海海洋研究所青年人才领域前沿项目(SQ200812)

Variations of absorption coefficient of seawater in the Pearl River Estuary and a hyperspectral retrieval model for an algal bloom

Expand
  • 1. LED, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100039, China

Received date: 2009-05-06

  Revised date: 2009-12-15

  Online published: 2010-03-23

摘要

基于2007年8月海洋光学浮标在珠江口投放期间获得的近16天的实测生物光学数据, 对一次藻华过程中水体总吸收系数和水色光谱的变化特性及其相互关系进行了研究。结果表明, 藻华前后水体中非藻类物质尤其是有色溶解有机物在蓝光波段具有较强的吸收贡献, 而当藻华爆发时, 随着叶绿素a浓度的急剧增大, 浮游植物的吸收贡献明显增强; 各波段之间总吸收系数呈现出较好的线性相关关系, 吸收光谱蓝绿波段比值的变化对遥感反射率的光谱分布有重要的贡献; 据此建立了对水体总吸收系数反演的经验关系模型, 表现出较高的反演精度, 计算值与实测值之间相对偏差的均方根在可见光波段可控制在24%以内。

本文引用格式

王桂芬,曹文熙,杨跃忠,周雯,梁少君, . 珠江口藻华水体总吸收系数的变化特性及高光谱反演模式[J]. 热带海洋学报, 2010 , 29(2) : 52 -58 . DOI: 10.11978/j.issn.1009-5470.2010.02.052

Abstract

In August 2007, bio-optical measurements were collected over a period of 16 days in the Pearl River Estuary, and an algal bloom was detected. In situ radiometric data were obtained using a marine optical buoy. The variations in absorption properties and ocean color of seawater and their internal relationship were investigated. The results show that the colored detrital matter (CDM), especially the colored dissolved organic matter (CDOM), had large contributions to the total absorption of seawater at blue waveband, while the absorption contribution of phytoplankton tended to increase with the rapid increase of chlorophyll a concentration when the bloom occurred. Linear regression was used to express the spectral correlations between total absorption coefficients at 443nm and at other visible bands, and the blue-to-red ratio of absorption showed a big effect on the spectral distribution of spectral reflectance. An empirical hyperspectral ocean color model for retrieving the absorption coefficient was developed, and the calculated and measured results showed small discrepancy, with relative root mean square error being less than 24% over the visible spectrum.

参考文献

[1] KIRK J T O. Light and Photosynthesis in Aquatic Ecosystems [M]. Cambridge University Press, Cambridge, 1994.

[2] CULLEN J J, CIOTTI A M, DAVIS R F, et al. Optical detection and assessment of algal blooms[J]. Limnology and Oceanography, 1997, 42(2): 1223–1239.

[3] MILLIE D F, SCHOFIELD O M, KIRKPATRICK G J, et al. Detection of harmful algal blooms using photopigments and absorption signatures: a case study of the Florida red tide dinoflagellate, Gymnodinium breve[J]. Limnology and Oceanography, 1997, 42(5): 1240–1251.

[4] CLEMENTSON L A, PARSLOW J S, TURNBULL A R, et al. Properties of light absorption in a highly coloured estuarine system in south-east Australia which is prone to blooms of the toxic dinoflagellate Gymnodinium catenatum [J]. Estuarine, Coastal and Shelf Science, 2004, 60: 101–112.

[5] ETHERIDGE S M, ROESLER C S. Temporal variations in phytoplankton, particulates, and colored dissolved organic material based on optical properties during a Long Island brown tide compared to an adjacent embayment [J]. Harmful Algae, 2004, 3: 331–342.

[6] BAROCIO-LEON Ó A, MILLAN-NUÑEZ R, SANTAMARIA-DEL-ÁNGEL E,et al. Bio-optical characteristics of a phytoplankton bloom event off Baja California Peninsula (30–31?N) [J]. Continental Shelf Research, 2008, 28: 672–681.

[7] ROESLER C S, MCLEROY-ETHERIDGE S L. Remote detection of harmful algal blooms [J]. Ocean Optics XIV, 1998, 1, 117–128.

[8] MOREL A, GENTILI B, CHAMI M, et al. Bio-optical properties of high chlorophyll Case 1 waters and of yellow-substance-dominated Case 2 waters
[J]. Deep-Sea Research I, 2006, 53: 1439–1459.

[9] CANNIZZARO J P, CARDER K L, CHEN F R, et al. A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data [J]. Continental Shelf Research, 2008, 28: 137–158.

[10] 周名江, 朱明远, 张经. 中国赤潮的发生趋势和研究进展[J]. 生命科学, 2001, 13(2): 53–59.

[11] MUELLER J L, FARGION G S, MCCLAIN C R, et al. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation[R], Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols, 2003, 39pp., Greenbelt, Md.

[12] 杨跃忠, 孙兆华, 曹文熙, 等, 海洋光学浮标的设计及应用试验[J]. 光谱学与光谱分析, 2009, 29(2): 565–569.

[13] 杨跃忠, 曹文熙, 孙兆华, 等. 海洋高光谱辐射实时观测系统的研制[J]. 光学学报, 2009, 29(1): 102–107.

[14] GORDON H R, DING K. Self-shading of in-water optical instruments[J]. Limnology and Oceanography, 1992, 37: 491–500.

[15] BAKER K S, SMITH R C. Irradiance transmittance through the air-water interface, Ocean Optics X[J]. Proc. SPIE, 1990, 1302: 556–565.

[16] THUILLIER G, HERSE M, LABS D, et al. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions[J]. Solar Physics, 2003, 214: 1–22.

[17] YENTSCH C S. Measurement of visible light absorption by particulate matter in the ocean[J]. Limnology and Oceanography, 1962, 7: 207–217.

[18] ROESLER C S. Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique [J]. Limnology and Oceanography, 1998, 43: 1649–1660.

[19] KIRKPATRICK G J, ORRICO C, MOLINE M A, et al. Continuous hyperspectral absorption measurements of colored dissolved organic material in aquatic systems [J]. Applied Optics, 2003, 42(33): 6564–6568.

[20] ZHAO J, CAO W X, WANG G F, et al.The variations in optical properties of CDOM throughout an algal bloom event [J]. Estuarine, Coastal and Shelf Science, 2009, 82, 225–232.

[21] POPE R, FRY E. Absorption spectrum (380 - 700 nm) of pure waters: II. Integrating cavity measurements [J]. Applied Optics, 1997, 36: 8710–8723.

[22] PARSONS T R, MAITA Y, LALLI C M. A manual of chemical and biological methods for seawater analysis [M]. Oxford: Pergamon Press, 1984.

[23] BARNARD A H, PEGAU W S, ZANEVELD J R V. Global relationships of the inherent optical properties of the oceans [J]. Journal of Geophysical Research, 1998, 103(C11): 24955–24968.

[24] BARNARD A H, ZANEVELD J R, PEGAU W S. In situ determination of the remotely sensed reflectance and the absorption coefficient: closure and inversion [J]. Applied Optics, 1999, 38: 5108–5117.

[25] SMYTH T, MOORE G, HIRATA T, et al. Semianalytical model for the derivation of ocean colour inherent optical properties: Description, implementation, and performance assessment [J]. Applied Optics, 2006, 45: 8116−8131.

[26] DIERSSEN H M, KUDELA R M, RYAN J.P, et al. Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments[J]. Limnology and Oceanography, 2006, 51(6): 2646–2659.

[27] HU C M, LUERSSEN R, MULLER-KARGER F E, et al. On the remote monitoring of Karenia brevis blooms of the west Florida shelf [J]. Continental Shelf Research, 2008, 28: 159–176.

[28] LEE Z P, LUBAC B, WERDELL J, et al. An Update of the Quasi-Analytical Algorithm (QAA_v5). http://www.ioccg. org/groups/software.html. 2009.

文章导航

/