海洋生物学

褐菖鲉仔、稚鱼消化系统发育的组织学观察

  • 杨佳喆 , 1 ,
  • 齐闯 1 ,
  • 徐善良 , 2
展开
  • 1. 宁波大学海洋学院, 浙江 宁波 315211
  • 2. 应用海洋生物技术教育部重点实验室, 宁波大学, 浙江 宁波 315211
通信作者:徐善良(1962—), 教授。E-mail:

作者简介:杨佳喆(1993—), 汉族, 男, 浙江省嘉兴市人, 研究生, 研究方向是海水鱼类健康养殖。Email:

收稿日期: 2018-07-17

  要求修回日期: 2018-11-01

  网络出版日期: 2019-04-15

基金资助

浙江省“十三五”优势专业建设项目(宁波大学水产养殖专业)

浙江省公益技术应用研究项目(2017C32015)

Histological studies on development of the digestive system in larval and juvenile Sebastiscus marmoratus

  • YANG Jiazhe , 1 ,
  • QI Chuang 1 ,
  • XU Shanliang , 2
Expand
  • 1. School of Marine Sciences, Ningbo University, Ningbo 315211, China
  • 2. Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315211, China
Corresponding author: XU Shanliang. Email:

Received date: 2018-07-17

  Request revised date: 2018-11-01

  Online published: 2019-04-15

Supported by

Zhejiang “13th Five-Year” Advantage Professional Construction Project (Aquaculture Major of Ningbo University)

Public Technology Application Research Projects of Zhejiang Province (2017C32015)

Copyright

热带海洋学报编辑部

摘要

为探究卵胎生鱼类褐菖鲉(Sebastiscus marmoratus)的仔、稚鱼消化系统组织学特点, 采用常规组织切片技术, 并用HE染色和组织化学染色, 比较分析了产出后0~50d的褐菖鲉仔、稚鱼消化系统发育的组织学变化。结果显示: 褐菖鲉初产仔鱼已分化出口咽腔, 并具有初始的食道、胃、肠、肝脏和胰脏; 2日仔鱼肛门与外界相通, 食道扩大, 开始摄食, 进入混合性营养期; 3~4日仔鱼幽门盲囊出现, 食道内壁出现黏膜皱褶5~6个, 胃黏膜皱褶5个, 肝细胞团区域扩大; 5~6日仔鱼卵黄囊和油球耗尽, 进入外源性营养期, 食道黏膜上皮出现杯状细胞, 肠道弯曲, 可区分前中肠和后肠两部分; 10~14日仔鱼食道环肌层明显, 黏膜皱褶增加到7~12个, 胃壁四层结构基本形成, 肠道黏膜皱褶加深, 纹状缘清晰可见, 肝细胞分裂迅速, 数量显著增加, 体积增大, 出现肝血窦和胰岛; 28~30日稚鱼出现胃腺和胃小凹, 已具功能性胃, 标志着稚鱼期的开始, 此时胰岛细胞数量和酶原颗粒增多, 消化能力显著提高; 47~50日稚鱼已基本具有成鱼胃的特征, 肠道纹状缘发达, 肝细胞呈多边形, 细胞内含大量脂肪颗粒, 消化系统从结构和功能上已趋于完善。由此可见, 褐菖鲉仔鱼和稚鱼消化系统的发育具有卵胎生鱼类发育较早的特点, 与其消化功能的完善密切相关。

本文引用格式

杨佳喆 , 齐闯 , 徐善良 . 褐菖鲉仔、稚鱼消化系统发育的组织学观察[J]. 热带海洋学报, 2019 , 38(2) : 58 -66 . DOI: 10.11978/2018071

Abstract

Sebastiscus marmoratus as a marine economical teleost, research on the development of the larvae and juveniles of this species become important. In this study, the developmental characteristics of digestive system in S. marmoratus from 0 to 50 days post-parturition (dpp) were described by the method of tissue sectioning technique, HE (hematoxylin-eosin) staining and histochemical staining. The results showed that the initial digestive system appeared to have a differentiated buccopharyngeal cavity after parturition. At 2 dpp, the larvae began feeding, and the digestive tube opened to the outside initially, and the larvae entered the endo-exotrophic period. The pyloric caeca appeared at 3-4 dpp, while 5~6 mucosal folds appeared in esophagus, and five mucosal folds appeared in stomach and hepatic cell mass grew. At 5-6 dpp, the yolk sac was completely absorbed, meaning the larvae began getting into exotrophic period Ⅰ (without a functional stomach). Meanwhile, goblet cells were observed in esophagus, and intestine can be divided into promesenteron and hindgut. At 10-14 dpp, circular layers of striated muscle were obviously observed and 7-12 mucosal folds appeared in esophagus; stomach had a basic structure, brush border became clear and there were a few hepatic sinusoids in a bigger liver, which was good for the digestion and absorption of exogenous food. At 28-30 dpp, the gastric glands and gastric pits appeared, which was the signs of the juvenile stage. With the increase of the number of islet cells and zymogen granules, the digestion was greatly improved. At 47-50 dpp, the digestive system gradually improved as a functional and structural one, which resembled that of adults. These results showed that the development of the digestive system in S. marmoratus started early like other ovoviviparous teleosts and was relative with the improving function of its digestion.

褐菖鲉(Sebastiscus marmoratus), 俗称“石头鲈”、“虎头鱼”等, 隶属于鲉形目(Scorpaeniformes)、鲉亚目(Scorpaenoidei)、鲉科(Scorpaenidae)和菖鲉属(Sebastiscus), 是一种底层肉食性卵胎生鱼类。广泛分布于中国、朝鲜半岛、日本、菲律宾等国近海岩礁海域, 也是开展人工养殖与增殖放流的优良海水鱼种之一(石戈 等, 2007)。
鱼类消化系统结构决定了鱼类的食性(徐革锋 等, 2009), 研究消化系统的结构和功能是认识和探讨鱼类消化生理的基础和途径之一(方华华 等, 2011), 是作为监测鱼类幼苗生长发育过程中消化能力和营养需求变化规律的一种常用手段, 可进一步优化幼苗的培育条件(Micale et al, 2010)。国内外对多种卵生硬骨鱼类仔、稚、幼鱼消化系统发育的研究已有较多报道, 如北美牙鲆(Paralichthys californicus)(Gisbert et al, 2004)、银鲳(Pampus argenteus)(高露姣 等, 2007)、大黄鱼(Pseudosciaena crocea)(徐晓津 等, 2010)、卵形鲳鲹(Trachinotus ovatus)(区又君 等, 2011)、黄鳍鲷(Sparus latus)(王永翠 等, 2012)、条石鲷(Oplegnathus fasciantus)(区又君 等, 2015)、大西洋白姑鱼(Argyrosomus regius)(Solovyev et al, 2016)等, 而对卵胎生硬骨鱼类的研究较少, 仅见林强等(2007)对大海马(Hippocampus kuda)消化系统早期发育的组织学特征的研究。
近几年有关褐菖鲉的国内外研究, 主要涉及褐菖鲉成鱼的消化道组织学和组织化学特性(石戈 等, 2007), 褐菖鲉脑部结构特性(Murakami et al, 1983, 2010)和环境污染物对其的影响(Zheng et al, 2016; 孙文静 等, 2018)等方面, 对褐菖鲉仔、稚鱼的消化系统组织学研究目前仍为空白, 本文探讨了褐菖鲉消化机能的早期发育规律, 为人工育苗中饵料的供给提供参考。

1 材料和方法

1.1 实验用鱼

从温州市洞头区海域捕获的野生成熟褐菖鲉中挑选实验用褐菖鲉亲鱼, 在浙江省海洋水产养殖研究所洞头基地水泥养殖池中自然分娩产出的仔鱼。将同一天产出的仔鱼及时转移到育苗池培育, 1~10d仔鱼投喂轮虫, 10~15d仔鱼混合投喂轮虫和丰年虫, 15~20d仔鱼后投喂丰年虫和桡足类, 28d进入稚鱼期后, 投喂桡足类为主, 35~50d稚鱼增加投喂鱼、虾穈和配合饲料。
培养水温为15~17℃, 盐度为27‰~32‰, pH为7.8~8.2, 溶氧在6mg•L-1以上, 每天换水1次。

1.2 取样固定及组织切片的制作

1~20d每天取样, 20d后隔2~3d取样, 取样持续至50d稚鱼。于每日早上投喂前取样, 每次取样30尾左右。样品用Bouin’s氏液固定24h后, 用70%乙醇溶液洗脱保存。经常规脱水透明、石蜡包埋等程序处理后, 分别对组织块进行横、纵连续切片, 切片厚度为6μm, 常规HE染色(金国雄 等, 2013)。
对23日仔鱼、30日和33日稚鱼样品进行组织化学研究。样品用Carnoy氏液固定, 采用汞-溴酚蓝法显示蛋白质(Pearse, 1983)。
所有切片在Olympus-BX51显微镜下观察, 并选取典型结构进行拍照。

2 结果

2.1 褐菖鲉的消化道发育

2.1.1 口咽腔
初产的褐菖鲉仔鱼, 口咽腔已形成, 具有一层口腔黏膜上皮细胞, 此时无黏膜下层和肌肉层的出现。2日仔鱼的口咽腔扩大, 上颌口腔瓣和下颌口腔瓣都已出现, 上颌比下颌长(图1b)。3日时, 口咽腔出现肌肉层, 此时的口咽腔结构已具有黏膜层、黏膜下层和肌肉层(图1c)。10日仔鱼的口咽腔后部明显增厚并出现皱褶, 同时黏膜上皮出现杯状细胞和黏液细胞(图1e)。随后至稚鱼期, 口咽腔的变化集中在杯状细胞和黏液细胞数量的增加上。
Fig. 1 Histological observation of the development of buccopharyngeal cavity and esophagus of larva and juvenile of S. marmoratus.

(a) longitudinal section of digestive tract of larva; (b) longitudinal section of buccopharyngeal cavity of 2 dpp larva; (c) longitudinal section of buccopharyngeal cavity of 3 dpp larva; (d) longitudinal section of esophagus of 4 dpp larva; (e) longitudinal section of goblet cells in esophagus of 10 dpp larva; (f) transverse section of circular layers of striated muscle and mucosal folds in esophagus of 21 dpp larva; (g) longitudinal section of esophagus and stomach of 28 dpp juvenile; (h) transverse section of esophagus of 39 dpp juvenile. B: Buccopharyngeal cavity; BV: buccopharyngeal valve; CSM: circular layers of striated muscle; E: eye; ES: esophagus; G: gill; GC: goblet cell; GG: gastric gland; H: heart; IV: interlobular vains; L: liver; M: mucosa; MC: mucus cell; MF: mucosal fold; MS: muscle layer; S: serosa; SCE: simple columnar epithelium; SM: submucosa; ST: stomach; YS: yolk sac

图1 褐菖鲉仔、稚鱼口咽腔和食道发育的组织结构

a. 初产仔鱼消化道整体结构纵切面; b. 2日仔鱼口咽腔整体结构纵切面; c. 3日仔鱼口咽腔结构纵切面; d. 4日仔鱼食道整体结构纵切面; e. 10日仔鱼食道的杯状细胞纵切面; f. 21日仔鱼食道的环层肌和黏膜皱褶横切面; g. 28日稚鱼食道和胃纵切面; h. 39日稚鱼食道横切面。B: 口咽腔; BV: 口咽瓣; CSM: 环肌层; E: 眼; ES: 食道; G: 鳃; GC: 杯状细胞; GG: 胃腺; H: 心脏; IV: 小叶间静脉; L: 肝; M: 黏膜; MC: 黏液细胞; MF: 黏膜褶; MS: 肌肉层; S: 浆膜层; SCE: 单层立方上皮; SM: 黏膜下层; ST: 胃; YS: 卵黄囊

2.1.2 食道
初产仔鱼已经分化出一个短而狭窄的食道腔, 与初始的胃腔相连, 呈直管状, 具单层细胞的黏膜层, 细胞核为球形, 未出现肌层和杯状细胞(图1a)。产出2日后, 食道逐步扩大, 食道壁也渐增厚。4日仔鱼食道的内层具有复层扁平上皮, 食道到胃过渡带为单层立方上皮, 此时食道内壁出现细小的向内腔纵向凸起的纵行黏膜皱褶5~6个, 较薄的肌肉层也随之发生, 食道组织分为了浆膜层、肌肉层和黏膜层3层结构(图1d)。6日仔鱼的食道黏膜上皮出现杯状细胞, 至10日仔鱼的食道黏膜上皮中有一些黏液细胞出现, 纵行黏膜皱褶增加到7~9个, 肌肉层增厚(图1e)。13日仔鱼食道环肌层明显, 纵行黏膜皱褶增至11~12个。21日仔鱼食道的环肌层发达, 厚度达到7.5μm (图1f)。28日仔鱼食道前段富含大量杯状细胞, 纵肌层仍较薄, 黏液细胞数量大量增加(图1g)。39日稚鱼食道内壁纵行黏膜皱褶达到15个, 肌肉层发达, 环肌层的厚度增至为12.7μm (图1h)。
2.1.3 胃
初产仔鱼已发现原始的胃腔结构, 胃壁与食道的上皮结构相似, 为简单的单层细胞(图2a)。3日仔鱼胃黏膜皱褶5个, 皱褶最高为23μm, 已有分层结构, 但分化不明显(图2b)。4日仔鱼胃的幽门部出现几个管状突出物, 即为分化的幽门盲囊, 以此区分贲门胃、胃体与幽门胃(图2c)。10日仔鱼的胃壁基本成型, 由浆膜层、肌肉层、黏膜下层和黏膜层组成, 胃腔内黏膜纵褶数量增多, 纵褶高35μm, 黏膜层由单皮柱状细胞构成, 细胞紧密排列, 细胞核位于细胞中下部, 黏膜层与黏膜下层较厚, 肌层尚不明显(图2e)。23日仔鱼胃壁肌层增厚, 黏膜褶皱增加(图2h)。28日仔鱼胃黏膜下层中出现少量实心细胞团的胃腺(图1g)。30日仔鱼胃腔内的皱褶加粗, 组织化学显示, 胃壁被汞-溴酚蓝染成深蓝色(图3), 黏膜层和肌肉层染色较深, 黏膜下层和浆膜层则染色稍浅。39日稚鱼胃的组织结构发育更完善, 胃壁出现胃小凹, 胃腺数量增多, 胃黏膜皱褶厚度达90μm (图2j)。47日稚鱼胃中管状胃腺十分丰富, 皱褶大量增多, 黏膜下层和肌肉层增厚, 胃腔进一步扩大, 基本具有成鱼胃的特征(图2k)。
Fig. 2 Histological observation of the development of stomach and intestine of larva and juvenile of S. marmoratus.

(a) transverse section of brush border in intestine of larva; (b) longitudinal section of liver and stomach of 3 dpp larva; (c) transverse section of pyloric caecum of 4 dpp larva; (d) longitudinal section of intestine of 8 dpp larva; (e) transverse section of stomach of 10 dpp larva; (f) transverse section of cavitation in intestinal epithelium of 10 dpp larva; (g) transverse section of foregut, hindgut and midgutof 13 dpp larva; (h) transverse section of stomach of 23 dpp larva; (i) transverse section of intestine of 28 dpp juvenile; (j) transverse section of stomach of 39 dpp juvenile; (k) transverse section of stomach of 47 dpp juvenile; (l) transverse section of intestine of 47 dpp juvenile; (m) longitudinal section of stomach of 30 dpp juvenile by Mercury Bromophenol blue method. B: Buccopharyngeal cavity; BB: brush border; CA: cavitation; CV: central vein; ES: esophagus; FO: foregut; GC: goblet cell; GP: gastric pit; HI: hindgut; I: intestine; L: liver; M: mucosa; MF: mucosal fold; MI: midgut; MS: muscle layer; P: pancreas; PC: pyloric caecum; S: serosa; SM: submucosa; SMF: Secondary mucosal fold; VC: vertebral column; YS: yolk sac

图2 褐菖鲉仔、稚鱼胃和肠发育的组织结构

a. 初产仔鱼肠纹状缘结构横切面; b. 3日仔鱼肝和胃纵切面; c. 4日仔鱼幽门盲囊横切面; d. 8日仔鱼肠道整体结构纵切面; e. 10日仔鱼胃整体结构横切面; f. 10日仔鱼肠上皮细胞空泡结构横切面; g. 13日仔鱼前肠、中肠、后肠横切面; h. 23日仔鱼胃整体结构横切面; i. 28日稚鱼肠整体结构横切面; j. 39日稚鱼胃整体结构横切面; k. 47日稚鱼胃整体结构横切面; l. 47日稚鱼肠道整体结构横切面; m. 30日稚鱼整体纵切面, 汞-溴酚蓝染色。B: 口咽腔; BB: 纹状缘; CA: 空泡; CV: 中央静脉; ES: 食道; FO: 前肠; GC: 杯状细胞; GP: 胃小凹; HI: 后肠; I: 肠; L: 肝; M: 黏膜; MF: 黏膜褶; MI: 中肠; MS: 肌肉层; P: 胰; PC: 幽门盲囊; S: 浆膜层; S: 浆膜层; SM: 黏膜下层; SMF: 次级黏膜褶; VC: 脊椎; YS: 卵黄囊

Fig. 3 Histological observation of the development of liver and pancreas of larva and juvenile of S. marmoratus.

(a) longitudinal section of digestive gland of larva; (b) longitudinal section of liver and pancreas of 3 dpp larva; (c) longitudinal section of pancreas of 13 dpp larva; (d) transverse section of liver of 14 dpp larva; (e) transverse section of pancreas of 20 dpp larva; (f) longitudinal section of liver of 47 dpp juvenile; (g) transverse section of pancreas of 50 dpp juvenile; (h) longitudinal section of liver of 23 dpp larva by Mercury Bromophenol blue method. B: Buccopharyngeal cavity; BC: blood cell; CV: central vein; E: eye; ES: esophagus; G: gill; HC: hepatic cell; HCC: hepatic cell cords; HS: hepatic sinusoid; I: intestine; IV: interlobular vains; L: liver; P: pancreas; PD: pancreatic duct; PI: pancreatic island; ST: stomach; V: vacuolar structure (liver); VC: vertebral column; YS: yolk sac

图3 褐菖鲉仔、稚鱼肝脏和胰脏发育的组织结构

a. 初产仔鱼消化腺整体结构纵切面; b. 10日仔鱼肝脏和胰脏整体结构纵切面; c. 13日仔鱼胰脏整体结构纵切面; d. 14日仔鱼肝脏横切面; e. 20日仔鱼胰脏横切面; f. 47日稚鱼肝脏整体结构纵切面; g. 50日稚鱼胰脏整体结构横切面; h. 23日仔鱼整体纵切面, 汞-溴酚蓝染色。B: 口咽腔; BC: 血细胞; CV: 中央静脉; E: 眼; ES: 食道; G: 鳃; HC: 肝细胞; HCC: 肝细胞索; HS: 肝血窦; I: 肠; IV: 小叶间静脉; L: 肝; P: 胰脏; PD: 胰管; PI: 胰岛; ST: 胃; V: 空泡结构(肝); VC: 脊椎; YS: 卵黄囊

2.1.4 肠
初产仔鱼尚未摄食, 但已出现肠的结构, 由单层柱状细胞组成, 细胞核位于中部, 靠近肠腔的内层可见HE染色呈淡红色的纹状缘, 出现低矮褶皱(图2a)。2日仔鱼的肛门与外界连通, 肠道中已发现食物。5日仔鱼肠道弯曲, 可区分前中肠和后肠两部分。至8日, 肠道结构完整, 也由浆膜层、肌肉层、黏膜下层和黏膜层组成, 肠道出现2个肠曲, 使前肠、中肠和后肠界限清晰, 肠黏膜细胞上皮及黏膜皱褶高度明显增加(图2d)。10日仔鱼肠上皮细胞出现空泡结构(图2f)。13日仔鱼后肠染色较浅, 细胞核位于细胞底部, 纹状缘清晰可见, 黏膜皱褶继续加深, 后肠皱褶比前中肠更甚(图2g)。21日仔鱼肠上皮细胞核上空泡数量增加。28日仔鱼肠道的单层柱状细胞排列更加规则、紧密, 细胞核位于细胞中下部; 肠道黏膜上皮的固有膜和黏膜下层界限不明显, 黏膜上皮分布许多杯状细胞, 排列无规律; 黏膜皱褶丰富, 皱褶的排列方向不一, 肌层增厚(图2i)。47日稚鱼, 肠道纹状缘发达, 黏膜皱褶更丰富, 同时出现次级皱褶(图2l)。

2.2 消化腺发育

2.2.1 肝脏
初产仔鱼在卵黄囊和消化道之间出现略呈三角形、染色较浅且结构松散的肝细胞团, 即为肝脏原基, 其细胞界限不是很清晰, 在肝脏与卵黄囊接触的反侧, 卵黄液化区域内可见一些未成熟的血细胞(图3a)。3日仔鱼的肝脏细胞团依三角形区域扩大, 细胞核大, 位于肝细胞中央(图2b)。10日仔鱼肝细胞分裂迅速, 数量显著增加, 肝脏体积增大。肝细胞染色加深, 呈索状排列, 已出现大量空泡结构, 细胞核被挤到一侧, 即肝细胞开始贮存脂质。同时出现肝血窦, 数量多但体积小, 肝血窦内有少许未发育完全的血细胞(图3b)。14日仔鱼肝细胞排列十分致密, 空泡结构大量增多, 肝血窦数量增多(图3d)。23日仔鱼, 组织化学结果显示, 肝组织被汞-溴酚蓝染成深蓝色, 细胞核和细胞质染色深度一致(图3h)。28日仔鱼肝血窦内有大量血细胞, 肝脏血管丰富。47日稚鱼肝细胞多呈多边形结构, 核染色深呈球形, 位于细胞一侧, 细胞内含大量脂肪颗粒, 不易染色, 呈透亮状。由肝细胞排列而成的肝细胞索以中央静脉为中心, 向周围呈辐射状分布, 此时肝脏在组织学上与成体一致(图3f)。
2.2.2 胰脏
初产仔鱼在肝的下方出现紫蓝色的胰腺细胞团, 且有少部分已埋于肝腹侧(图3a)。7日仔鱼胰腺细胞体积稍有增大, 已经聚集为胰脏。10日仔鱼可见散布在外分泌部中的胰岛, 其细胞颜色较浅, 呈圆团状分布, 排列疏松, 血细胞较少(图3b)。13日仔鱼胰腺细胞分化速度快, 细胞数量增加, 为不规则结构, 核为圆形。细胞之间界限不清晰, 含有大量酶源颗粒。胰腺细胞主要分布于肝与胃之间, 颜色加深, 细胞核位于细胞中央(图3c)。20日仔鱼, 胰岛增多, 胰脏静脉血管明显, 分布少量血细胞(图3e)。28日仔鱼胰岛细胞数量增加, 体积进一步扩大, 酶原颗粒增多, 间隙增大。50日稚鱼胰腺发育更加完全, 在组织学上和成体结构基本一致(图3g)。

3 讨论

3.1 发育水温与仔、稚鱼消化系统发育的关系

口和肛门的形成及其与外界相通是仔鱼即将开口摄食的重要标志之一(Anderson et al, 2012)。有研究表明, 在适温范围内, 水温越高仔鱼口和肛门与外界相通以及卵黄囊耗尽的时间越早(刘鉴毅 等, 2015; Faccioli et al, 2016)。在中国东海海域, 褐菖鲉的生殖季节为11月至翌年4月间, 此时的自然水温为10~18℃ (林丹军 等, 2002; 邱成功 等, 2013), 本研究褐菖鲉的培育水温为15~17℃, 处于其自然繁殖水温范围内。
有胃硬骨鱼类的消化系统早期发育主要可分为四个时期: 从仔鱼孵出或产出到其开口摄食的阶段为内源性营养期; 仔鱼开口摄食外源性食物到其卵黄完全吸收期间, 则被称作内源和外源混合性营养期; 仔鱼完全依赖外源性食物的外源性营养期 Ⅰ (不具功能性胃)以及胃腺出现后稚鱼期开始的外源性营养期 Ⅱ (具有功能性胃)(Faccioli et al, 2016)。本研究发现, 褐菖鲉的消化系统发育亦具有上述阶段性特征。几种有胃及无胃硬骨鱼类的消化系统早期发育时期比较见表1
Tab. 1 Division of early development stages of digestive system in some teleosts with or without stomach

表1 几种有胃及无胃硬骨鱼类的消化系统早期发育时期划分

种类 发育时期划分
培育水温/℃ 内源性
营养期/d
混合
营养期/d
外源性
营养期Ⅰ/d
外源性
营养期Ⅱ/d
有胃硬骨鱼 褐菖鲉(本研究) 15.0~17.0 0~1 2~5 6~27 28
卵形鲳鲹(区又君 等, 2011) 23.0~28.0 0~2 3~5 6~17 18
大黄鱼(徐晓津 等, 2010) 25.6~29.4 0~3 4~5 6~18 19
大西洋白姑鱼(Solovyev et al, 2016) 18.0 0~1 2~4 5~25 26
鲇(Silurus asotus)(蒲红宇 等, 2004) 24.0~25.0 0~3 4~6 7~10 11
哲罗鱼(Hucho taimen)(张永泉 等, 2010) 3.0~14.0 0~10 11~18 19~30 31
无胃硬骨鱼 普安银鲫(Carassius auratus)(姚俊杰 等, 2013) 22.5~27.5 0~2 3~4 5
草鱼(Ctenopharyngodon idellus)(阮国良 等, 2012) 26.0~28.0 0~3 4~5 6
表1可知, 普安银鲫和草鱼等鲤科鱼类属无胃鱼类, 与多数有胃鱼类不同, 其消化系统发育的差异直接导致了其仔稚鱼发育阶段划分的差异(谢木娇 等, 2017)。此外, 种间不同的发育水温也直接影响着鱼类消化系统的发育速度。培育水温较低的大西洋白姑鱼和哲罗鱼等鱼类进入具有功能性胃的外源性营养期 Ⅱ 的时间需要26~31d, 远比较高温度的大黄鱼等鱼类时间长, 即水温低鱼类的消化系统发育慢, 主要表现为胃腺出现的时间较晚。本研究中的褐菖鲉虽为卵胎生繁殖类型, 但也具有该发育特性。

3.2 褐菖鲉仔、稚鱼消化系统发育的特点

褐菖鲉属海洋中少数的卵胎生鱼类之一, 孵化后需在卵巢液中生活几天后才产出体外, 故初产仔鱼的口咽腔已形成, 这与卵生硬骨鱼类都不同。林丹军等(2002)认为褐菖鲉仔鱼在母体内孵化后第5日口部初开, 7日产出。邱成功等(2013)也发现1日仔鱼上下颌已经形成, 且偶尔可见下颌活动。而大海马仔鱼产出后即可独立摄食, 在育儿囊内完成了内源性营养期, 直接进入混合营养期(林强 等, 2007)。此外, 褐菖鲉初产仔鱼还具有原始的食道, 胃腔、肠结构, 以及独立的肝、胰脏, 1日龄仔鱼的消化系统明显比大黄鱼(徐晓津 等, 2010)等大多数海水鱼类发育快。褐菖鲉和大海马的这种现象, 与其在亲代体内发育了一段时间再产出有关。褐菖鲉初产仔鱼虽然开口, 但尚未摄食, 其所需营养物质与所有硬骨鱼类一样, 仍由其卵黄囊提供。
褐菖鲉2日仔鱼已能摄食外源性食物(邱成功 等, 2013)。辅助消化器官幽门盲囊分化也较早, 这与大黄鱼(徐晓津 等, 2010)等大多数有胃硬骨鱼类在胃腺出现前后才分化不同。幽门盲囊与食道和胃出现的黏膜皱褶, 可以扩大消化道的贮存容积和消化面积, 利于食物的充分消化和吸收(勾效伟 等, 2008; 区又君 等, 2015)。相关研究都表明, 海水鱼仔鱼开口摄食后的第一周是至关重要的阶段, 特别是在外源性摄食开始和卵黄囊吸收完成时(Solovyev et al, 2016), 如不及时供给适合开口饵料将会影响到仔鱼生长甚至造成死亡(Sarasquete et al, 1995)。对褐菖鲉而言, 2~5日是内源性转向外源性营养的关键阶段, 此时要保障适口的轮虫供给。
褐菖鲉的卵黄囊持续时间与大多数有胃硬骨鱼类相似(表1), 5日褐菖鲉仔鱼的卵黄囊和油球完全吸收, 进入外源性营养期 Ⅰ。6日后仔鱼的食道复层上皮出现杯状细胞, 表明能够分泌中性和酸性黏液, 在摄食食物时, 可以更好地润滑和保护上皮组织, 起到保护上皮组织减少摩擦和避免伤害的作用(Díaz et al, 2008; Faccioli et al, 2016)。而中性黏液起到乳化食物变成食糜的作用(Murray et al, 1996), 也证明了褐菖鲉的消化作用可能在食道就开始了, 尤其是对通过咽齿咀嚼后形成的一些小颗粒食物的消化(石戈 等, 2007)。8~10日仔鱼的胃基本成型, 肠道结构基本完整, 可明显区分前肠、中肠和后肠, 其肠黏膜皱褶初具成体特性: 后肠皱褶最密, 呈网状褶; 中肠皱褶最高, 呈纵行褶, 而前肠皱褶的密度和高度都低于前肠和中肠(石戈 等, 2007)。10日仔鱼肠上皮细胞出现空泡, 揭示了仔鱼发育期间, 消化道存在着胞吞和细胞内消化作用(区又君 等, 2015)。同时, 肝脏出现大量空泡结构, 这些空泡为储存在肝脏中的糖原(Boulhic et al, 1992)。组织化学实验结果显示, 23日肝脏中存储的蛋白质含量已很高。许多研究表明, 硬骨鱼类肝脏和胰脏发育时间存在种属间的差异。褐菖鲉肝脏和胰脏皆为独立器官, 与具有弥散性胰腺的卵形鲳鲹(区又君 等, 2011)等鱼类不同, 而与大黄鱼(徐晓津 等, 2010)等一致。褐菖鲉初产仔鱼已同时具有肝脏和胰脏, 林丹军等(2002)研究发现在母体内孵化后第3日仔鱼的肠管旁已出现肝脏组织, 早于胰脏出现, 次序上与大部分鱼类一致。仔鱼外源性摄食的发生, 主要依赖于胰腺分泌的消化酶, 褐菖鲉仔鱼拥有一个在形态和功能上发育比较好的胰腺, 为其开口摄食提供了良好的保障。在外源性营养期 Ⅰ (胃前消化), 褐菖鲉仔鱼主要依靠黏液细胞和杯状细胞的分泌物, 通过肠道和胰腺中的酶类进行消化, 经由肠上皮细胞吸收到达淋巴细胞和血液, 最后存储在肝脏中。
28日褐菖鲉的胃出现胃腺, 其胃腺出现时间较晚。组织化学实验证实在胃腺出现2d (产出30d)后胃中的蛋白含量就明显增多, 表明了胃腺大量分泌胃蛋白酶消化外源性食物蛋白。功能性胃的出现, 标志着褐菖鲉稚鱼期的开始和更完善的消化机制的形成(Tanaka, 1971; Sarasquete et al, 1995; Solovyev et al, 2016)。这比邱成功等(2013)在形态学上以35d作为仔鱼与稚鱼期的划分时间提前了一周左右, 该现象也在条石鲷(区又君 等, 2015)和青龙斑(李加儿 等, 2016)等硬骨鱼类中存在。同时, 在褐菖鲉的胃黏膜上皮中没有发现消化道常见的杯状细胞, 揭示了其胃消化功能主要依赖于强大的胃腺(石戈 等, 2007)。与此同时, 食道和肠道的主要变化是皱褶的加深和肌肉层的增厚, 而幽门盲囊结构也更趋于完整。47~50日褐菖鲉稚鱼的消化系统在质的方面已于成鱼基本一致, 随着鳞被形成, 进入幼鱼期(邱成功 等, 2013)。
综上所述, 褐菖鲉消化系统的发育具有卵胎生鱼类发育较早的特性, 也符合有胃硬骨鱼类消化系统发育的规律, 体现了褐菖鲉消化系统的发育与其功能相一致的关系。

The authors have declared that no competing interests exist.

[1]
方华华, 王波, 2011. 星斑川鲽仔稚鱼消化系统发育的组织学研究[J]. 中国农学通报, 27(14): 50-54.A histological examination was made on the development of digestive system in larval and juvenile starry flounder Platichthys stellatus Pallas from 1 day to 35 days. In 3 days, the digestive tract in the larvae was formed but no food was intaken when the starry flounde was in endotrophic stage. In 3-5 days , the mixotrophic stage which was the transition from endo- trophic stage to exdoerophic stage, the yolk was absorbed fairly well and disappesred , while the digestive tract was differentiated into six portions: buccopharynnx, soesophagus , stomach , anterior- middleinte- stine , posterior intestine and anus. The larval digestive system was morphologically ready to be absorbed to food at this time. Then , these digestive tract and associated glands became mature gradually with the development. Gastric glands were observed in 16 days , which indicates he was a kind of fish faster development.

FANG HUAHUA, WANG BO, 2011. Histological studies on the development of digestive system in larval and juvenile Starry flounder[J]. Chinese Agricultural Science Bulletin, 27(14): 50-54 (in Chinese with English abstract).

[2]
高露姣, 施兆鸿, 严莹, 2007. 银鲳仔鱼消化系统的组织学研究[J]. 中国水产科学, 14(4): 540-546.对出膜后1~12 d银鲳(Pampus argenteus)仔鱼的消化系统进行了形态学和组织学观察.在水温为22~24℃和盐度25~28情况下,初孵仔鱼具很大的卵黄囊,消化管为一简单的直形盲管,管腔狭窄,口和肛门尚未与外界接通.3 d仔鱼消化系统分化加快,在卵黄囊凹陷部位出现2~3个弯曲,已初步分化出食道、胃、肠和肝脏,肠管也变粗.4 d仔鱼消化系统各器官初步形成.5 d仔鱼出现侧囊,并见部分卵黄囊和油球.7 d卵黄囊和油球基本被完全吸收,仔鱼主动摄食轮虫和小球藻,从内源性营养向外源性营养的过渡基本完成.12 d以后仔鱼肝脏明显分为两叶,体积增大;幽门盲囊指状分支已增加到几十根;食道、胃和肠的黏膜皱褶明显增多和加深,肠黏膜上皮细胞高度增加,游离面纹状缘发达;胃黏膜的单层柱状上皮高度和胃腺细胞数量也明显增加;但整个消化道的黏膜下层、肌肉层均不发达,说明12 d仔鱼已具初步消化和吸收功能.

DOI

GAO LUJIAO, SHI ZHAOHONG, YAN YING, 2007. Histological studies on development of digestive system in larval Pampus argenteus[J]. Journal of Fishery Sciences of China, 14(4): 540-546 (in Chinese with English abstract).

[3]
勾效伟, 区又君, 廖锐, 2008. 平鲷消化系统形态学、组织学及组织化学研究[J]. 南方水产, 4(5): 28-36.对平鲷(Rhabdosargus sarba)消化系统结构进行观察,采用HE和AB—PAS染色方法分别从组织学和组织化学方面进行研究。结果表明,平鲷口咽腔宽大,具不同类型发达齿;食道粗短,内表面分布纵行粘膜褶;胃分为贲门、胃盲囊和幽门,贲门胃小凹和胃腺最多,胃盲囊厚度最大;肠道具丰富粘膜褶;幽门与前肠交界处有幽门盲囊8—10个。肝小叶分界不明显,管状结构丰富。胰腺腺泡和胰岛分布于肝脏内大静脉周围,腺泡细胞染色深蓝色。根据AB—PAS染色结果将消化道粘液细胞分为4型,Ⅰ型为红色,Ⅱ型为蓝色,Ⅲ型为紫红色,Ⅳ型为蓝紫色。胃部可见极少量Ⅱ型及Ⅲ型粘液细胞,其余部位均以Ⅱ型粘液细胞为主。结果表明,粘液细胞消化系统不同部位的分布密度与对应部位消化功能相关。

DOI

GOU XIAOWEI, OU YOUJUN, LIAO RUI, 2008. Histological and histochemical study of digestive system of Rhabdosargus sarba[J]. South China Fisheries Science, 4(5): 28-36 (in Chinese with English abstract).

[4]
金国雄, 徐伟, 耿龙武, 等, 2013. 大鳞鲃消化系统早期发育的组织学观察[J]. 水产科学, 32(6): 311-315.采用石蜡切片和显微观察的方法对由初孵仔鱼至23日龄的大鳞鲃消化系统发育进行了研究.初孵大鳞鲃仔鱼卵黄囊呈圆球形,消化道位于卵黄囊上方并伸展至卵黄囊后部,由柱状上皮细胞所组成,大部分为细胞索.2日龄时,口裂形成,口咽腔向鱼体后部进一步延伸.4日龄时,大鳞鲃的消化道由口至肛门全部打通,消化道分化为口咽腔、食道、前肠和后肠四部分.5日龄时,整个食道形成黏膜层,杯状细胞迅速增多,开始形成纵向褶皱.7日龄时,肝脏和胰脏的基本结构形成,并在肝脏和胰脏之间出现由单层柱状细胞围成的胆囊.10日龄时,卵黄囊消失,大鳞鲃完全通过摄取外界食物获取营养.10日龄-14日龄,消化道长度增长,褶皱加深,吸收表面积增加.14日龄后,通过大量摄食外源食物,大鳞鲃的体长迅速增大.

DOI

JIN GUOXIONG, XU WEI, GENG LONGWU, et al, 2013. Histological observation of early ontogenetic development of digestive system in Bulatmail barbel Barbus capito[J]. Fisheries Science, 32(6): 311-315 (in Chinese with English abstract).

[5]
李加儿, 吴水清, 区又君, 等, 2016. 斜带石斑鱼(♀)×鞍带石斑鱼(♂)杂交子代(青龙斑)消化系统的早期发育[J]. 动物学杂志, 51(1): 73-83.本文研究斜带石斑鱼(Epinephelus coioides)(♀)×鞍带石斑鱼(E.lanceolatus)(♂)杂交子代(青龙斑)仔、稚、幼鱼的消化系统发育,描述了其消化器官发育过程和组织学结构特征,充实青龙斑生物学研究文库,为其发育生物学研究和苗种培育提供技术支撑。青龙斑苗种培育于2012年6~8月期间进行。水温为(30±1)℃,盐度为28±1。利用形态学和连续组织切片技术,对出膜后0~40日龄幼鱼的消化系统进行了观察和研究。消化系统发育可划分为内源性营养、混合营养和外源性营养3个阶段:0至3日龄为内源性营养阶段,初孵仔鱼消化管为一简单的直形管,卵黄囊大,椭圆形,口和肛门尚未与外界相通;口腔中出现鳃弓的雏形,3日龄仔鱼食道由2~3层的复层立方上皮细胞组成,形成较低的褶皱;胃与小肠和食道的分界明显,上皮由单层柱状细胞组成;肠道分化,肛门开通体外,开始摄食;肝细胞团和胰腺细胞团形成。4~5日龄为混合营养阶段,6日龄之后进入外源性营养阶段,卵黄囊已经完全被吸收,前、中、后肠和直肠区分明显,肠黏膜上皮中出现少量的杯状细胞,由肠腔面向深层依次可以分为黏膜层、黏膜下层和浆膜层,肌层不明显。至25日龄,消化系统的结构和功能已经较为完善。38日龄时,胃、幽门盲囊、肠以及直肠各段分界明显,黏膜褶皱高度为前肠〉中肠〉后肠;肌层厚度为后肠〉前肠〉中肠;消化道和消化腺组织结构与成鱼基本相同。青龙斑的消化系统发育和分化是与其生理功能的逐步完善同步的。

DOI

LI JIAER, WU SHUIQING, OU YOUJUN, et al, 2016. Post-embryonic development of the digestive system in Qinglong grouper (Epinephelus coioides♀× E. lanceolatus♂)[J]. Chinese Journal of Zoology, 51(1): 73-83 (in Chinese with English abstract).

[6]
林丹军, 尤永隆, 2002. 卵胎生硬骨鱼褐菖鲉胚胎及仔鱼的发育[J]. 台湾海峡, 21(1): 45-52.

LIN DANJUN, YOU YONGLONG, 2002. Embryonic and larval development of ovoviviparous teleost, Sebastiscus marmoratus[J]. Journal of Oceanography in Taiwan Strait, 21(1): 45-52 (in Chinese with English abstract).

[7]
林强, 吕军仪, 张彬, 等, 2007. 大海马消化系统胚后发育的形态学及组织学研究[J]. 热带海洋学报, 26(6): 46-51.大海马Hippocampus kuda为卵胎生海洋硬骨鱼类。利用解剖和连续组织切片技术,对孵化后2、5、9日龄、1月龄和3月龄几个特殊时期大海马消化系统的形态和组织学特征进行 了报道。结果表明,大海马仔鱼孵化后1日,其消化系统已经明显分化为口咽腔、食道、小肠、直肠以及肝胰脏、胆囊等器官,但是仔鱼仍然以内源与外源混合性营 养为主,至5日龄仔鱼变为完全的外源性营养;仔鱼孵化后9日左右是大海马的死亡“临界点”,其消化系统的组织结构更趋于复杂;1月龄大海马的消化系统在结 构和功能上进一步完善,小肠前端呈“z”型结构,管壁变厚,纵、环肌发达,肝脏组织充满大部分体腔,但在小肠周围仍然不能辨认独立的胰脏实体结构;3月龄 成海马已经有了成熟的消化系统组织结构,保证了最大限度地消化和吸收动物性饵料。整个胚后发育阶段大海马没有形成胃,鱼体的形态和组织结构的变化与食性的 变化紧密适应。

DOI

LIN QIANG, JUNYI, ZHANG BIN, et al, 2007. Histological studies on post-embryonic development of digestive system of Seahorse Hippocampus kuda[J]. Journal of Tropical Oceanography, 26(6): 46-51 (in Chinese with English abstract).

[8]
刘鉴毅, 宋志明, 王妤, 等, 2015. 温度对点篮子鱼幼鱼生长、摄食和消化酶活性的影响[J]. 海洋渔业, 37(5): 442-448.研究了不同养殖温度(19℃、23℃、27℃、31℃)对点篮子 鱼(Siganus guttatus)幼鱼生长、摄食和肠道消化酶活性的影响.结果表明,实验期间各温度组幼鱼存活率(SR)均达到95%以上,19℃组存活率显著低于其余 各组(P<0.05);在19~31℃范围内,幼鱼的特定生长率(SGR)和相对增重率(WGR)随温度的升高而显著增加(P<0.05),在31℃时达 到最高值;不同温度组的体质量增长速度由高到低依次为31℃>27℃>24℃>19℃,31℃和27℃温度组体质量呈二项式增长,23℃和19℃组呈线性 增长;随着温度升高,其饵料系数(FCR)逐渐降低(P<0.05),回归分析显示在29.89℃时达到最小值;摄食率(FR)随着温度的升高而显著升高 (P<0.05),曲线分析得其在31.74℃时达到最大值.温度对幼鱼肠道胰蛋白酶活性影响显著,随温度降低呈逐渐升高的趋势,19℃组胰蛋白酶活性显 著高于27℃和31℃组(P<0.05);温度对幼鱼肠道脂肪酶活性无显著性影响(P>0.05);温度对幼鱼肠道淀粉酶和麦芽糖酶活性影响显著 (P<0.05),在23℃时达到最大值.综合以上结果认为,点篮子鱼幼鱼快速生长的适宜温度范围为29.89 ~31.74℃,在此温度范围内点篮子鱼幼鱼可获得较大的生长率.

LIU JIANYI, SONG ZHIMING, WANG YU, et al, 2015. Effects of water temperature on growth, feeding and activities of digestive enzymes of juvenile Siganus guttatas[J]. Marine Fisheries, 37(5): 442-448 (in Chinese with English abstract).

[9]
区又君, 何永亮, 李加儿, 2011. 卵形鲳鲹消化系统的胚后发育[J]. 台湾海峡, 30(4): 533-539.

OU YOUJUN, HE YONGLIANG, LI JIAER, 2011. Postembryonic development of digestive system of Trachinotus ovatus[J]. Journal of Oceanography in Taiwan Strait, 30(4): 533-539 (in Chinese with English abstract).

[10]
区又君, 李加儿, 艾丽, 2015. 条石鲷早期发育阶段消化系统组织学研究[J]. 华南农业大学学报, 36(1): 23-27.目的研究条石鲷Oplegnathus fasciantus从初孵仔鱼到幼鱼这一发育阶段消化系统的形态学变化和组织结构特征.方法利用形态学和连续组织切片技术,对出膜后0~35日龄的条石鲷各期仔、稚、幼鱼的消化系统进行了观察和研究.结果和结论在水温24~27℃,盐度29~30,pH 7.4~8.2的条件下,初孵仔鱼(0日龄仔鱼)消化道仅是一条位于卵黄囊后的尚未分化的细管状结构,卵黄囊体积较大,H-E染色呈淡红色.随着条石鲷的生长发育,其消化系统也在逐渐成熟和完善,条石鲷消化系统的发育完善要经过3个阶段,第1阶段是0~3日龄,消化道几乎未分化;第2个阶段为4~18日龄,消化系统初步发育成型,具备了基本的摄食、消化和吸收功能;第3阶段为19~35日龄,形成胃腺和幽门盲囊,消化系统发育完善,具备成鱼的结构.

DOI

OU YOUJUN, LI JIAER, AI LI, 2015. A study on the histology of digestive system in early life stages of Oplegnathus fasciantus[J]. Journal of South China Agricultural University, 36(1): 23-27 (in Chinese with English abstract).

[11]
蒲红宇, 翟宝香, 刘焕亮, 2004. 鲇仔、稚鱼消化系统胚后发育的组织学观察研究[J]. 中国水产科学, 11(1): 1-8.通过石蜡包埋切片法对鲇(Silurus asotus L.)仔、稚鱼消化系统胚后发育进行了较系统的组织切片观察。本研究描述了全长5.0—22.5mm的鲇摄食器官、消化器官胚后发育的组织学结构特征。观察发现,1~3日龄为内源性营养阶段,卵黄囊很大,2日龄消化道出现裂缝状腔隙,3日龄基本贯通但未开始摄食;4—6日龄为混合营养阶段,卵黄囊被逐步吸收,主要靠吞食轮虫、小型枝角类等为食;6日龄以后卵黄囊消失,进入外源性营养阶段,捕食能力增强。观察还发现,鲇前咽顶壁始终平直无粘膜皱褶;颌齿和咽齿为斜生尖锥状的同型齿,数量多、排列紧密,与相应的骨骼牢固地骨性固着;后咽、食道的粘膜上皮内粘液细胞极多,深层结缔组织肌肉层发达。这些构造适应于鲇的完全吞食摄食方式。胃腔小,前肠膨大、中肠粘膜上皮细胞纹状缘发达,肝脏和胰脏发育速度较快。胃的消化功能较弱,主要储存、消化场所为前肠,吸收场所在中肠。鱼苗4—6日龄下塘适宜,6—8日龄可开始诱其摄食人工饲料。

DOI

PU HONGYU, ZHAI BAOXIANG, LIU HUANLIANG, 2004. Histological studies on post-embryonic development of digestive system in larval catfish Silurus asotus[J]. Journal of Fishery Sciences of China, 11(1): 1-8 (in Chinese with English abstract).

[12]
邱成功, 徐善良, 齐闯, 等, 2013. 褐菖鲉(Sebastiscus marmoratus)早期生长发育与人工繁育技术研究[J]. 宁波大学学报(理工版), 26(4): 17-23.

QIU CHENGGONG, XU SHANLIANG, QI CHUANG, et al, 2013. Studies on early growth and development in Sebastiscus marmoratus with artificial breeding technology[J]. Journal of Ningbo University (NSEE), 26(4): 17-23 (in Chinese with English abstract).

[13]
阮国良, 杨代勤, 王卫民, 2012. 草鱼、鳡和翘嘴鲌消化道组织的早期发育[J]. 水生生物学报, 36(6): 1164-1170.研究仔稚鱼消化机能的发育变化对于掌握鱼类早期发育阶段的消化特点、营养需要及提高仔稚鱼成活与生长等均有重要意义。采用HE、PAS等染色方法, 对草鱼(<i>Ctenopharyngodon idellus</i>)、鳡(<i>Elopichthys bambusa</i>)和翘嘴鲌(<i>Culter alburnus</i>)消化道组织的早期发育进行了研究, 结果表明: (1)初孵仔鱼卵黄囊的相对体积以鳡的最大; (2)均在孵后2d和3d分别出现肠管和口裂, 在孵后3d、4d和2d分别出现肠腔; (3)在孵后4d、7-9d和4d其肠腔内分别出现食物团, 表明此时草鱼、鳡和翘嘴鲌已分别开始外源性摄食; (4)在孵后5d、6d和6d其肠道内表面分别出现黏膜褶, 随后在稚鱼中其黏膜褶的高度和数量不同程度的发育; (5)草鱼和鳡的肠道分别在孵后14d和30d出现盘曲, 而在翘嘴鲌的切片图中未发现其肠道的盘曲; (6)草鱼、鳡和翘嘴鲌的肠道分别于孵后17-23d、30d和24-29d出现数量较多的黏液细胞, 此时标志着食性的转换和分化过程基本完善。

DOI

RUAN GUOLIANG, YANG DAIQIN, WANG WEIMIN, 2012. Ontogeny of the digestive tracts in Grass carp (Ctenopharyngodon idellus), Yellowcheck carp (Elopichthys bambusa) and Topmouth culter (Culter alburnus)[J]. Acta Hydrobiologica Sinic, 36(6): 1164-1170.

[14]
石戈, 王健鑫, 刘雪珠, 等, 2007 褐菖鲉消化道的组织学和组织化学[J]. 水产学报, 31(3): 293-302.褐菖鲉消化道的组织学和组织化学=Study on histology and histochemistry of digestive tract in Sebastiscus marmoratus[刊,中]/石戈(浙江海洋学院海洋科学学院,浙江 舟山 316004),王健鑫,刘雪珠,王日昕//水产学报.-2007,31(03).-293~302利用光镜技术对褐菖鲉消化道进行了组织学和组织化学研究。组织学研究表明:褐菖鲉消化道由口咽腔、食道、胃和肠4部分组成。口咽腔较大,上下颌,犁骨及腭骨均有细齿带,粘膜由复层鳞状上皮组成,并含有大量黏液细胞和少量杯状细胞;食道粗而短,上皮组织包括扁平上皮层区域和单层柱状上皮层区域,上皮含有大量杯状细胞和黏液分泌细胞,粘膜层的固有膜中含有腺体;胃呈Y型,包括贲门、胃体和幽门3个区域,胃粘膜由单层柱状上皮组成,在贲门和胃体部的粘膜层中有厚的结实层,上皮有大量的胃小凹和胃腺组织;胃幽门部括约肌明显,幽门上皮不含胃小凹;胃与肠相接处有8~9个指状幽门盲囊,其形态学和组织学特征与前肠类似;肠道上皮由单层柱状上皮细胞组成,丰富的微绒毛形成明显的纹状缘,上皮中含有大量杯状细胞,肠道系数为0.54。组织化学研究显示:幽门、幽门盲囊和肠上皮细胞顶端胞质和纹状缘具碱性磷酸酶活性;幽门盲囊及肠道上皮细胞顶端胞质中检测到酸性磷酸酶活性;在贲门部和胃体部的固有层以及幽门上皮还检测到酯酶活性,且酯酶定位于幽门柱状上皮细胞胞质的上半部。整个消化道的粘膜层中存在许多粘液细胞:食道上皮含大量酸性粘液细胞,胃上皮细胞均含有中性粘液,而肠道由前向后中性粘液物质逐渐减少,酸性粘液物质逐渐增多。组织学和组织化学的结果表明褐菖鲉食道有润滑和微弱的消化作用,胃有消化脂类和吸收糖类的功能;幽门和盲囊有较强的吸收脂类的功能;前肠、中肠和后肠有活跃的细胞内消化和吸收功能,整个消化道结构与其肉食性功能密切相关。图3参29

DOI

SHI GE, WANG JIANXIN, LIU XUEZHU, et al, 2007. Study on histology and histochemistry of digestive tract in Sebastiscus marmoratus[J]. Journal of Fisheries of China, 31(3): 293-302 (in Chinese with English abstract).

[15]
孙文静, 王晓艳, 祁鹏志, 等, 2018. 苯并[a]芘(BaP)对褐菖鲉(Sebasticus marmoratus)肝CYP1A1酶活性、基因表达及蛋白表达的影响[J]. 海洋与湖沼, 49(4): 897-903.为了了解苯并[a]芘(BaP)对鱼类细胞色素P4501A1(CYP1A1)表达的影响,以褐菖鲉(Sebasticus marmoratus)为实验材料,采用体内实验,研究其在经过不同浓度(0.1、1、10、20、50mg/kg鱼体重量)的BaP诱导后,鱼体肝脏研究CYP1A1基因表达的情况,筛选出后续时间-效应实验中BaP注射的最佳浓度,研究BaP诱导6h、12h、1d、3d、7d后(质量浓度为20mg/kg鱼体重量)鱼体肝脏CYP1A1酶活性、基因表达和蛋白表达的情况。结果表明:剂量-效应实验中,20mg/kg鱼体重量为最佳浓度,此浓度下,基因表达在各组中变化最显著。时间-效应实验中,较空白对照组而言,染毒6h、12h和1d后,EROD酶活性显著增加。3d后开始下降,与对照组相比变化不大,7d后酶活性又发生上调。半定量RT-PCR结果表明,各染毒组与对照组相比,CYP1A1基因表达量都发生了上调,呈现先上升后下降的趋势。其中,6h和12h组相对表达量极显著增加,1d后开始下降且与3d和7d组相比变化不明显。Western blot结果表明,蛋白表达量在染毒12h后表现出显著的诱导效应,随着时间的延长略有回落,但与对照组相比仍有显著性差异。研究表明:BaP对褐菖鲉CYP1A1具有较强的诱导作用。一定质量浓度的BaP注射于褐菖鲉不同的时间后,能诱导褐菖鲉活体EROD酶活性、CYP1A1基因m RNA表达及蛋白表达,并随着时间的延长呈现先诱导后抑制的趋势。这说明BaP作为诱导剂对CYP1A1酶活性和蛋白表达的作用机制可能与调控CYP1A1的转录水平有关。

SUN WENJING, WANG XIAOYAN, QI PENGZHI, et al, 2018. Effects of benzo[a]pyrene on erod activity, mRNA expression, and protein expression of cyp1a1 in the liver of sebasticus marmoratus[J]. Oceanologia et Limnologia Sinica, 49(4): 897-903 (in Chinese with English abstract).

[16]
王永翠, 李加儿, 区又君, 等, 2012. 黄鳍鲷仔、稚、幼鱼消化道形态组织学观察[J]. 南方农业学报, 43(8): 1212-1217.目的】了解黄鳍鲷 (Sparus latus)仔、稚、幼鱼消化道的形态组织学特征,为其发育生物学研究和鱼苗健康繁育提供理论依据,进一步充实黄鳍鲷生物学研究文库。【方法】采用常规石 蜡组织切片的方法,对黄鳍鲷仔、稚、幼鱼消化道的形态组织进行观察。【结果】2日龄仔鱼消化道仅为一条未分化的管道;5日龄仔鱼消化道分化为食道、胃和肠 道,食道黏膜上皮由立方状细胞组成,胃黏膜上皮由单层矮柱状细胞组成,二者均无黏膜褶皱,肠分化为小肠和直肠,小肠壁内部出现黏膜褶皱,直肠内壁无褶 皱;7日龄仔鱼消化道进一步分化,各段管壁增厚,食道和胃内壁仍无黏膜褶皱,幽门盲囊开始分化,小肠黏膜上皮中含有大量杯状细胞。稚鱼消化道在质方面向幼 鱼的基本型发育,食道、胃、幽门盲囊、肠道表现出固有的类型和数量,消化道扩张,肌肉层加厚,黏膜褶皱加深,杯状细胞增多。幼鱼消化道进一步发育完善,其 组织结构与成鱼相似,由食道、胃、幽门盲囊、小肠和直肠组成;各部分管壁从内到外都分化为黏膜层、黏膜下层、肌肉层和浆膜层。【结论】黄鳍鲷消化道的胚后 发育特征与其摄食方式及功能相适应,进一步证实无论鱼类处于生长发育的任何阶段,其消化道形态组织结构均与功能密切相关。

DOI

WANG YONGCUI, LI JIAER, OU YOUJUN, et al, 2012. Histomorphology observation on digestive tract of larva, juvenile and young Yellowfin black porgy (Sparus latus)[J]. Journal of Southern Agriculture, 43(8): 1212-1217 (in Chinese with English abstract).

[17]
谢木娇, 区又君, 李加儿, 等, 2017. 四指马鲅(Eleutheronema tetradactylum)消化系统胚后发育组织学观察[J]. 渔业科学进展, 38(2): 50-58.

XIE MUJIAO, OU YOUJUN, LI JIAER, et al, 2017. Histological observation of the post-embryonic development of digestive tract of Eleutheronema tetradactylum[J]. Progress in Fishery Sciences, 38(2): 50-58 (in Chinese with English abstract).

[18]
徐革锋, 陈侠君, 杜佳, 等, 2009. 鱼类消化系统的结构、功能及消化酶的分布与特性[J]. 水产学杂志, 22(4): 49-55.本文综述了鱼类消化系统的结构、功能及消化酶的分布与特性的研究进展,旨在进一步了解鱼类各个消化器官的结构以及分布,其中的主要酶类所产生的功能效应,为今后深入探讨鱼类摄食、消化和吸收的生理机制等研究提供参考。

DOI

XU GEFENG, CHEN XIAJUN, DU JIA, et al, 2009. Fish digestive system: it’s structure, function and the distributions and characteristics of digestive enzymes[J]. Chinese Journal Fisheries, 22(4): 49-55 (in Chinese with English abstract).

[19]
徐晓津, 王军, 谢仰杰, 等, 2010. 大黄鱼消化系统胚后发育的组织学研究[J]. 大连水产学院学报, 25(2): 107-112.应用显微技术对大黄鱼Pseudosciaena crocea消化系统胚后发育的形态和组织结构进行了研究.鱼苗孵化出膜至22日龄时每天取样1次,22至30日龄时每两天取样1次,30日龄以后每5天 取样1次,直到60日龄.结果表明:在水温为25.6~29.4 ℃条件下,2日龄仔鱼肝脏出现,肛孔开裂;3日龄仔鱼胰脏、幽门盲囊出现,口形成;4日龄仔鱼胆囊出现,食道黏膜上皮中出现较多黏液细胞,胃肠分化,肠后 端具肠瓣与直肠分界,胃肠蠕动,口和肛门与外界相通;5日龄仔鱼肝脏分化为两叶,胰脏分散分布在肠的周围;12~13日龄仔鱼胃分化为贲门部、幽门部和胃 盲囊三部分,肠壁褶皱形成;36日龄稚鱼胃腺发育较好,幽门盲囊结构与成鱼相似,共16条.随着仔、稚、幼鱼的个体发育,消化道进一步扩张,肌肉层加厚, 黏膜层皱褶加深,黏液腺增多.60日龄幼鱼,消化道和消化腺发育较完善,基本具备了成鱼消化系统的组织结构.文中还讨论了大黄鱼育苗过程中的3个"危险 期"与消化系统发育变态的关系.

DOI

XU XIAOJIN, WANG JUN, XIE YANGJIE, et al, 2010. Post-embryonic histological development in digestive system of Large yellow croaker Pseudosciaena crocea[J]. Journal of Dalian Fisheries University, 25(2): 107-112 (in Chinese with English abstract).

[20]
姚俊杰, 梁正其, 冯亚楠, 等, 2013. 普安银鲫消化系统胚后发育的组织学观察[J]. 贵州农业科学, 41(11): 152-155.为了解普安银鲫消化系统发育的形态学与组织学变化,采用石蜡切片的方法对普安银鲫仔鱼消化系 统的胚后发育进行了观察.结果表明:普安银鲫初孵仔鱼的鱼体透明,消化系统尚未形成,依靠吸收腹部卵黄囊内的卵黄来维持生命和器官发育.1日龄仔鱼卵黄囊 背侧有1条直管,即为消化道,此时为内源性营养阶段;2日龄仔鱼消化道管腔明显,消化道上皮细胞出现分化,肛门形成,消化道贯通;5日龄仔鱼消化管加粗, 肠内有食物残留,消化系统分化明显,并出现明显的食道、肝胰脏,出现杯状细胞,此时仔鱼进入外源性营养阶段;15日龄仔鱼的食道进一步分化,前肠空泡结构 出现,杯状细胞丰富,肝细胞索明显;30日龄幼鱼,消化系统组织结构与成鱼相似,能消化和吸收外源营养物质.说明,普安银鲫仔鱼消化系统的发育与食性的变 化相适应.

DOI

YAO JUNJIE, LIANG ZHENGQI, FENG YA’NAN, et al, 2013. Histological studies on post-embryonic development for digestive system of Carassius auratus[J]. Guizhou Agricultural Sciences, 41(11): 152-155 (in Chinese with English abstract).

[21]
张永泉, 刘奕, 尹家胜, 等, 2010. 哲罗鱼(Hucho tamen)消化系统胚后发育的形态与组织学的研究[J]. 海洋与湖沼, 41(3): 422-428.利用形态学和连续组织切片技术, 对哲罗鱼仔鱼、稚鱼和幼鱼的消化系统进行了光镜观察,描述了其消化器官发育过程中形态学和组织学结构特征。结果表明, 实验水温为7—12℃时, 初始孵化仔鱼消化道细而直, 两端封闭, 位于卵黄囊背, 随着仔鱼发育消化系统结构逐渐完善。破膜后16d消化系统完全贯通, 破膜34d 食道发育与成鱼基本相同, 明显分为粘膜层、粘膜下层、肌层及浆膜层,出现3—4 个粘膜褶皱; 破膜2d 在消化管道前端, 胃开始分化, 管壁较厚, 可见明显的两层, 胃原基细胞形成胃腔, 破膜24d 胃组织结构发育得较完整, 由粘膜层、粘膜下层、肌肉层和浆膜层构成, 出现胃腺; 破膜后46d 肠的组织结构与成鱼相同, 粘膜层大量分布Ⅰ型、Ⅱ型和Ⅲ型粘液细胞; 初孵仔鱼在肠背侧出现, 与肝脏相互分开的一个独立的器官为胰腺组织。哲罗鱼破膜后26d 消化系统明显分化成食道、胃、前肠、直肠以及肝脏和胰脏, 破膜后36d 出现幽门盲囊原基。本实验得出哲罗鱼仔鱼最佳初次投喂时间应在破膜后24—26d, 即上浮后3—5d, 由于破膜后46d 幽门盲囊组织结构发育基本完善, 可适当增加投喂量。

DOI

ZHANG YONGQUAN, LIU YI, YIN JIASHENG, et al, 2010. Morphology and histology of post-embryonic digestive system of Hucho taimen[J]. Oceanologia et Limnologia Sinica, 41(3): 422-428 (in Chinese with English abstract).

[22]
ANDERSON S A, SALINAS I, WALKER S P, et al, 2012. Early development of New Zealand hapuku Polyprion oxygeneios eggs and larvae[J]. Journal of Fish Biology, 80(3): 555-571.This study describes for the first time the normal development of New Zealand hapuku Polyprion oxygeneios embryos and larvae reared from fertilization to 11 days post-hatch (dph) at a constant temperature. Fertilized eggs were obtained from natural spawnings from communally reared captive wild broodstock. Eggs averaged 2 mm in diameter and had single or multiple oil globules. Embryos developed following the main fish embryological stages and required an average of 1859·50 degree hours post-fertilization (dhpf) to hatch. The newly hatched larvae (4·86 mm mean total length, LT) were undifferentiated, with unpigmented eyes, a single and simple alimentary tube and a finfold that covered the entire body. Larvae relied on the energy from the yolk-sac reserves until 11 dph (7·33 mm mean LT), when yolk-sac reabsorption was almost completed. Some of the major developmental stages from hatching to yolk-sac reabsorption were eye pigmentation (5 dph), upper jaw formation (7 dph), lower jaw formation (8 dph) and mouth opening (8–9 dph). By 9 dph, the digestive system consisted of pancreas, liver, primordial stomach, anterior and posterior gut; therefore, P. oxygeneios larvae would be capable of feeding on live prey. The developmental, morphological and histological data described constitutes essential baseline information on P. oxygeneios biology and normal development.

DOI PMID

[23]
BOULHIC M, GABAUDAN J, 1992. Histological study of the organogenesis of the digestive system and swim bladder of the Dover sole, Solea solea (Linnaeus 1758)[J]. Aquaculture, 102(4): 373-396.ABSTRACT The search for histological criteria related to starvation of Dover sole larvae necessitated a preliminary description of the digestive tract, its associated glands and the swim bladder morphogenesis from hatching to day 30. After hatching, the digestive tract is a simple undifferentiated tube, closed anteriorly. The larval period begins with the opening of the mouth. The digestive tract then becomes functional with differentiation of the oesophagus (which begins to secrete abundant mucus), the future stomach and the convoluted gut. The liver, gall bladder and pancreas also become apparent at this time. The first signs of intestinal absorption appear quickly after first feeding and can be identified as vacuoles in the midgut and eosinophilic granules in the hindgut. Glycogen is then progressively stored in the liver. This is followed by the formation of muscle layers, tooth development and swim bladder inflation. After metamorphosis, the appearance of the gastric glands indicates a change in digestion and the passage through the juvenile period.

DOI

[24]
DÍAZ A O, GARCÍA A M, GOLDEMBERG A L, 2008. Glycoconjugates in the mucosa of the digestive tract of Cynoscion guatucupa: a histochemical study[J]. Acta Histochemica, 110(1): 76-85.http://linkinghub.elsevier.com/retrieve/pii/S0065128107000864

DOI PMID

[25]
FACCIOLI C K, CHEDID R A, MORI R H, et al, 2016. Organogenesis of the digestive system in Neotropical carnivorous freshwater catfish Hemisorubim platyrhynchos (Siluriformes: Pimelodidae)[J]. Aquaculture, 451: 205-212.61Sensory structures ofHemisorubim platyrhynchoslarvae appeared at 2 DPH.61H. platyrhynchoshas an esophagus with goblet cells and a saccular intestine at the onset of exogenous feeding.61Larvae depend exclusively on exogenous feeding at 5 DPH, but gastric glands appeared at 15 DPH and, then, larvae could be weaned.61This study contributes to the knowledge of the digestive tract to improve the rearing of carnivorous freshwater fish.

DOI

[26]
GISBERT E, PIEDRAHITA R H, CONKLIN D E, 2004. Ontogenetic development of the digestive system in California halibut (Paralichthys californicus) with notes on feeding practices[J]. Aquaculture, 232(1-4): 455-470.The development of the digestive tract and accessory glands in California halibut ( Paralichthys californicus) is described from hatching to metamorphosis (42 days post-hatch, dph) at 18 C. Differentiation of the alimentary canal into the buccopharynx, esophagus, pre- and postvalvular intestine, and rectum was complete by 3 dph (2.7 0.1 mm standard length, SL) coinciding with the time of first feeding. Zymogen granules (pancreatic enzyme precursors) were detected in the exocrine pancreas 1 day before the onset of exogenous feeding and their number increased after first feeding, confirming the importance of pancreatic secretions during the agastric period of larval development and their genetically rather than dietarily induced secretion. The stomach was morphologically differentiated at 27 30 dph (7.2 7.5 mm SL) coinciding with the onset of eye migration. At this stage, gastric glands were abundant in the fundic region and cardiac and pyloric regions were also clearly distinguishable. Supranuclear bodies were observed in the postvalvular intestine throughout the study period, although the number decreased as the stomach differentiated and extracellular digestion took place. The reduction of supranuclear bodies might be due to a change in the protein digestion mechanism. Histological observations showed that Artemia-fed larvae had almost intact nauplii in the postvalvular intestinal lumen and rectum, suggesting a fast intestinal transit in California halibut larvae, and a limited availability of nutrients from brine shrimp nauplii. Special attention might be required in rearing tanks during the first week of exogenous feeding, since the desquamation of the esophageal epithelium and the absence of mucous secretion due to the lack of functional goblet cells may promote bacterial infections under poor water quality conditions.

DOI

[27]
MICALE V, LEVANTI M B, GERMANÀ A, et al, 2010. Ontogeny and distribution of cholecystokinin-immuno reactive cells in the digestive tract of sharpsnout sea bream, Diplodus puntazzo (Cetti, 1777), during larval development[J]. General and Comparative Endocrinology, 169(1): 23-27.http://linkinghub.elsevier.com/retrieve/pii/S001664801000239X

DOI PMID

[28]
MURAKAMI T, MORITA Y, 2010. Morphology and distribution of the projection neurons in the cerebellum in a teleost, Sebastiscus marmoratus[J]. Journal of Comparative Neurology, 256(4): 607-623.

[29]
MURAKAMI T, MORITA Y, ITO H, 1983. Extrinsic and intrinsic fiber connections of the telencephalon in a teleost, sebastiscus marmoratus[J]. Journal of Comparative Neurology, 216(2): 115-131.Extrinsic and intrinsic fiber connections of the telencephalic subdivisions of Nieuwenhuys ('62) in a teleost, , were studied by means of () and Fink-Heimer methods. The olfactory bulb projects bilaterally to area dorsalis pars posterior, area ventralis pars ventralis, pars lateralis, pars posterior, pars intermedia, and the posterior tuberis of Peter et al. ('75) and receives fibers from ipsilateral area dorsalis pars centralis, pars posterior, area ventralis pars dorsalis, and pars supracommissuralis. Area dorsalis pars posterior sends numerous fibers to the ipsilateral ventral region of area dorsalis pars medialis, from which fibers of the medial forebrain bundle arise and terminate in the inferior lobe and posterior tuberis. Area dorsalis pars lateralis, pars dorsalis, and the dorsal region of pars medialis are the main targets of extratelencephalic ascending afferents. Area dorsalis pars lateralis receives fibers from the ipsilateral prethalamicus of Meader ('34), where tectal projections terminate massively. Area dorsalis pars dorsalis and the dorsal region of pars medialis receive afferents from the ipsilateral preglomerulosus of Schnitzlein ('62), posterior tuberis, area preoptica pars medialis of Crosby and Showers ('69), and entopeduncularis of Sheldon ('12). Raphe nuclei and locus ceruleus project bilaterally to area dorsalis pars centralis, pars dorsalis, pars lateralis, and the dorsal region of pars medialis. Area dorsalis pars centralis, pars dorsalis, and the dorsal region of pars medialis are important sources of extratelencephalic efferents. These subdivisions give rise to the lateral forebrain bundle and project to the ipsilateral prethalamicus, preglomerulosus, inferior lobe, paracommissuralis of Ito et al. ('82), optic , semicircularis, and the bilateral mesencephalic tegmentum. Within the telencephalon, most of the ventral subdivisions project to ipsilateral area dorsalis pars centralis, pars dorsalis, pars lateralis, and the dorsal region of pars medialis. Area dorsalis pars centralis has reciprocal connections with ipsilateral area dorsalis pars lateralis, pars dorsalis, pars posterior, and the dorsal region of pars medialis. A dorsal part of the anterior commissure is composed of of the ventral region of area dorsalis pars medialis destined to the contralateral ventral region of area dorsalis pars medialis. A ventral part of the anterior commissure contains of area dorsalis pars centralis destined to contralateral area dorsalis pars lateralis.

DOI PMID

[30]
MURRAY H M, WRIGHT G M, GOFF G P, 1996. A comparative histological and histochemical study of the post‐gastric alimentary canal from three species of pleuronectid, the Atlantic halibut, the yellowtail flounder and the winter flounder[J]. Journal of Fish Biology, 48(2): 187-206.The histology and mucus histochemistry of the pleuronectid post-gastric alimentary canal was examined using light and electron microscopy. Distinct differences in goblet cell mucus histochemistry were observed between species, with the two closest taxonomic species, the winter flounder and the yellowtail flounder showing the most diversity and the halibut showing regional variation. Numbers of goblet cells within post-gastric regions did not differ significantly between species, but were significantly different between regions within species increasing toward the rectum. The post-gastric region was divisible into two areas based upon the ultrastructural features of lipid digestion and absorption in the intestine and pyloric caeca, and of exogenous protein in the rectum. The combination of species-specific histochemical differences in mucus and general histological and ultrastructural differences within the post-gastric regions between these species suggest a correlation between lumenal environmental conditions/histology and natural prey preference.

DOI

[31]
PEARSE A G E, 1983. Histochemistry, theoretical and applied[M]. 4th ed. London: Churchill Livingstone: 96-101.

[32]
SARASQUETE M C, POLO A, YÚFERA M, 1995. Histology and histochemistry of the development of the digestive system of larval gilthead seabream, Sparus aurata L.[J]. Aquaculture, 130(1): 79-92.Resorption of the yolksac and development of the digestive tract and associated organs, including the swim bladder, were studied in Sparus aurata larvae from hatching until day 30 using histological and histochemical procedures. At the onset of exogenous feeding three regions could be easily distinguished in the gut: the foregut including the oesophagus and a primordial stomach, the midgut and lastly the hindgut. At this time, the digestive tract was functional even though the stomach was not yet completely developed; gastric glands, for instance, were not present in the period studied. Glycogen and zymogen grains were stored in the liver and pancreas, respectively between days 4 and 6 after hatching. Proteins were observed in the pancreas, hepatic vascular system and to a lesser extent the hepatocytes. Once feeding had commenced, the anterior intestinal epithelium developed the capacity for the absorption of lipids, most of which were included in large lipid droplets. Simultaneously, acidophilic supranuclear inclusions containing proteins were observed in the posterior intestinal epithelium. All oesophageal mucous cells, intestinal goblet cells, epithelial columnar cells in the stomach, and enterocytes of the digestive epithelium were rich in carboxylated, sulphated and/or neutral mucosubstances. Proteins were not present in digestive goblet cells.

DOI

[33]
SOLOVYEV M M, CAMPOVERDE C, ÖZTÜRK S, et al, 2016. Morphological and functional description of the development of the digestive system in meagre (Argyrosomus regius): an integrative approach[J]. Aquaculture, 464: 381-391.

DOI

[34]
TANAKA M, 1971. Studies on the structure and function of the digestive system in teleost larvae. III. Development of the digestive system during postlarval stage[J]. Japanese Journal of Ichthyology, 18(4): 164-174.

[35]
ZHENG RONGHUI, CHEN HUANBIN, BO JUN, et al, 2016. Joint effects of crude oil and heavy metals on the gill filament EROD activity of marbled rockfish Sebastiscus marmoratus[J]. Ecotoxicology and Environmental Safety, 132: 116-122.

DOI

文章导航

/