海洋光学

基于浮游植物吸收光谱提取粒径参数

展开
  • 1. 中国科学院南海海洋研究所LED实验室, 广东 广州 510301; 2. 中国科学院研究生院, 北京 100039
梁少君(1984—), 女, 广东省广州市人, 硕士研究生, 主要从事海洋生物光学研究.

收稿日期: 2009-05-06

  修回日期: 2009-12-08

  网络出版日期: 2010-03-23

基金资助

中国科学院知识创新工程重要方向项目(KZCX2-YW-215); 国家自然科学基金青年项目(40906021)

Retrieval of phytoplankton size parameter from phytoplankton absorption spectra

Expand
  • 1. LED, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 2. Graduate Univ. of Chinese Academy of Sciences, Beijing 100039, China

Received date: 2009-05-06

  Revised date: 2009-12-08

  Online published: 2010-03-23

摘要

在南海北部、大亚湾及珠江口3个不同水体生物-光学数据的基础上, 研究了浮游植物粒径结构的变化特征, 建立了基于浮游植物吸收光谱提取的浮游植物粒径参数(S)的混合光谱模型。南海海区不同的水体环境下浮游植物的粒级结构有着很大的差异: 在河口和沿岸水体小型浮游植物占优势, 在外海水体微微型浮游植物占优势。浮游植物粒径参数随小型浮游植物增多而减少, 随微微型浮游植物增多而增大。叶绿素a浓度从外海到沿岸逐渐增大, 浮游植物粒径参数随叶绿素a浓度的增大而减小, 它们之间呈幂函数关系。结果表明, 利用混合光谱模型得到的浮游植物粒径参数与南海海区不同水体的生物-光学特征(粒级结构Rpico和Rmicro、粒级指数SI、叶绿素a浓度)有一定的相关性。具体的相关性表示为: S与粒级结构(Rpico和Rmicro)存在一定的关系, 与小型浮游植物和微微型浮游植物之间的线性相关系数分别是0.55和0.65; S与浮游植物粒级指数(SI)有较好的线性关系, 相关系数是0.57; S与叶绿素a浓度呈幂函数关系, 相关系数是0.64。这个混合光谱模型为从光学参数反演浮游植物种群的生态学信息提供了有效的手段, 同时又可用于分析浮游植物优势粒径结构对光学特性的影响。

本文引用格式

梁少君,曹文熙,王桂芬,周雯,赵俊,孙兆华, . 基于浮游植物吸收光谱提取粒径参数[J]. 热带海洋学报, 2010 , 29(2) : 59 -64 . DOI: 10.11978/j.issn.1009-5470.2010.02.059

Abstract

Data from three cruises conducted in the northern South China Sea (SCS), the Daya Bay and the Pearl River Estuary, respectively, were examined to access the variations of phytoplankton size structure. A spectral mixing model was established to retrieve phytoplankton size parameter from phytoplankton absorption spectra, with S as a proxy of the size parameter. There were significant similarities in phytoplankton size structure in the estuarine and coastal waters; however, it is very dif-ferent in the open ocean. In the estuarine and coastal waters, the micro-phytoplankton plays a dominant role, while in the open ocean the pico-phytoplankton was the dominant species. Phytoplankton size parameter tended to decrease with increasing micro-phytoplankton, and to increase with increasing pico-phytoplankton. There was an increasing trend for chlorophyll a concentration from the open ocean to the coastal sea. Phytoplankton size parameter showed a power function relation with chlorophyll a concentration and decreased with increasing chlorophyll a concentration. The results showed that there was a relationship between phytoplankton size parameter retrieved from the spectral mixing model and the bio-optical characteristics in different circumstances of the SCS. This spectral mixing model provided a simple tool for extracting ecological information of phytoplankton species from optical measurements, and can be used to analyze the influence of dominant phytoplankton size structure on optical characteristics.

参考文献

[1] 孙儒泳, 李庆芬, 牛翠娟, 等. 基础生态学[M]. 北京: 高等教育出版社, 2002: 191–192.

[2] 沈国英, 施并章. 海洋生态学[M]. 2版. 北京: 科学出版社, 2002: 39–42.

[3] HUANG BANG-QIN, HONG HUA–SHENG, WANG HAI-LI. Size-fractionated primary productivity and the phytoplankton hacteria relationship in the Taiwan Stait [J]. Mar Ecol Prog Ser, 1999, 183: 29–38.

[4] STOCKNER J G. Phototrophic picoplankton: An overview from marine and freshwater ecosystems[J]. Limnol Oeeanogr, 1988, 33: 765–775.

[5] TAKAHASHI M, BIENFANY P K. Size structure phyto-plankton biomass and photosynthesis in subtropical Hawaian waters[J].Mar Biol, 1983, 76: 203–2l1.

[6] DUYSENS L N M. The flattening of the absorption spectrum of suspensions as compared to that of solutions[J]. Biochim Biophys Acta, 1956, 19: 1–12.

[7] BRICAUD A, BABIN M, MOREL A, et al. Variability in the chlorophyll-specific absorption coefficients of natural phyto-plankton: Analysis and parameterization[J]. J Geophys Res, 1995, 100: 13321–13332.

[8] CLEVELAND J S. Regional models for phytoplankton ab-sorption as a function of chlorophyll a concentration[J]. J Geophys Res, 1995, 100: 13333–13344.

[9] CARDER K L, CHEN F R, LEE Z P, et al. Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures[J]. J Geophys Res, 1999, 104: 5403–5421.

[10] CARDER K L, HAWES S K, BAKER K A, et al. Reflec-tance model for quantifying chlorophyll a in the presence of productivity degradation products[J]. J Geophys Res, 1991, 96: 599–611.

[11] MITCHELL B G, HOLM-HANSEN O. Bio-optical proper-ties of Antarctic Peninsula waters: Differentiation from tem-perate ocean models[J]. Deep-Sea Res, 1991, 38: 1009–1028.

[12] MOBLEY C D, STRAMSKI D. Effects of microbial parti-cles on oceanic optics: Methodology for radiative transfer modeling and example simulations[J]. Limnol Oceanogr, 1997, 42: 550–560.

[13] STRAMSKI D, BRICAUD A, MOREL A. Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community[J]. Appl Opt, 2001, 40: 2929–2945.

[14] CIOTTI A M. Influence of phytoplankton communities on relationships between optical properties of coastal surface waters[D]. Dalhousie University, Department of Oceanogra-phy, 1999: 468–475.

[15] SATHYENDRANATH S, COTA G, STUART V, et al. Re-mote sensing of phytoplankton pigments: A comparison of empirical and theoretical approaches[J]. Int J Remote Sens, 2001, 22: 249–273.

[16] BRICAUD A, CLAUSTRE H, RAS J, et al. Natural variabil-ity of phytoplanktonic absorption in oceanic waters: Influ-ence of the size structure of algal populations[J]. J Geophys Res, 2004, 109, C11010, doi; 10. 1029/2004JC002419.

[17] CIOTTI A M, LEWIS M R, CULLEN J J.  Assessment of the relationships between dominant ce11 size in natural phytoplankton communities and the spectral shape of the absorption coeficient[J]. Limnol Oceanogr, 2002, 47: 404–410.

[18] GAN JIANPING, LI LI, WANG DONGXIAO, et al. Interac-tion of a river plume with coastal upwelling in the northeast-ern South China Sea[J]. Continental Shelf Research, 2009, 29: 728–740.

[19] SHU YEQIANG, ZHU JIANG, WANG DONGXIAO, et al. Performance of four sea surface temperature assimilation schemes in the South China Sea[J]. Continental Shelf Re-search, 2009, 29: 1489–1501.

[20] WANG DONGXIAO, XU HONGZHOU, LIN JING, et al. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004[J]. Journal of Oceanography, 2008, 64(6): 925–935.

[21] 王桂芬, 曹文熙, 许大志, 等. 南海北部水体浮游植物比吸收系数的变化[J]. 热带海洋学报, 2005, 24(5): 1–10.

[22] CAO W EN-XI, YANG YU-ZHONG, LIU SHENG, et a1. Absorption coefficients of phytopIankton in relation to chlo-rophyll and remote sensing reflectance in the coastal waters of southern China[J]. Pro Nat Sci, 2005, 15(4): 342– 350.

[23] CAO WEN-XI, YANG YUE-ZHONG, XU XIAO-QIANG, et a1. Regional pattern s of particulate spectral absorption in the Pearl River estuary [J]. Chinese Science Bulletin, 2003, 48(21): 2344–2351.

[24] PARSONS T R, MAITA Y, LALLI C M. A Manual of Chemical and Biological Methods for Seawater Analysis[M]. Oxford: Pergam on Press•1984, 15: 138–144.

[25] 赵辉, 齐义泉, 王东晓, 等. 南海叶绿素浓度季节变化及空间分布特征研究[J]. 海洋学报, 2005, 27(4): 45–52.

[26] HONG B, WANG D. Sensitivity study of the seasonal mean circulation in the northern South China Sea[J]. Adv Atmos Sci, 2008, 25(5): 824–840.

文章导航

/