南海次表层盐度的低频变化及与太平洋年代际振荡的关系
王祥鹏 (1995—), 男, 海南省澄迈县人, 博士研究生, 主要从事海气相互作用研究。E-mail: |
Copy editor: 孙淑杰
收稿日期: 2018-11-26
要求修回日期: 2019-02-28
网络出版日期: 2019-07-21
基金资助
中国科学院战略性先导科技专项((XDA19060501、XDA13010404);)
国家海洋局“全球变化与海气相互作用”专项((GASI-IPOV AI-02);)
国家自然科学基金项目((41525019、41506019、41805057、41830538))
版权
Low-frequency variability of subsurface salinity in the South China Sea and its relationship with the Pacific Decadal Oscillation
Copy editor: SUN Shu-jie
Received date: 2018-11-26
Request revised date: 2019-02-28
Online published: 2019-07-21
Supported by
This work is supported by the Chinese Academy of Sciences((XDA19060501、XDA13010404);)
the State Oceanic Administration of China((GASI-IPOV AI-02);)
and the National Natural Science Foundation of China((41525019、41506019、41805057、41830538))
Copyright
南海是西北太平洋最大的边缘海, 是联系北太平洋和北印度洋的关键通道。黑潮北上经过吕宋海峡时会将来自西太平洋的信号传入南海, 进而影响南海的水动力环境。研究了南海次表层盐度的空间分布特征、低频变化规律及其与太平洋年代际振荡(Pacific Decadal Oscillation, PDO)的关系, 并进一步探究了次表层盐度近年来的变化。结果显示: 1)南海次表层高盐水的位势密度主要介于24~26σθ, 受次表层气旋式环流所驱动, 盐度气候态空间分布北高南低, 以吕宋海峡处为起点, 呈逆时针自北向南逐渐降低。2)次表层盐度低频变化显著, 与PDO呈显著的正相关关系。当PDO处于正位相时, 吕宋海峡处西向平流输送加强, 次表层盐度升高; 当PDO处于负位相时, 吕宋海峡处西向平流输送减弱, 次表层盐度降低, 盐度的变化受到水平环流场的直接影响。3)近年来, 南海次表层盐度呈现先降低后升高再降低的趋势, 滞后PDO约10个月, 2006— 2014年初, 盐度呈下降趋势; 2014—2017年初, 盐度呈上升趋势, 且上升速率远大于先前下降的速率; 2017年后盐度再次逐渐降低。
王祥鹏 , 张玉红 , 王爱梅 , 赵玮 , 杜岩 . 南海次表层盐度的低频变化及与太平洋年代际振荡的关系[J]. 热带海洋学报, 2019 , 38(4) : 1 -9 . DOI: 10.11978/2018128
The South China Sea is the largest marginal sea in the northwestern Pacific and the key channel connecting the North Pacific and northern Indian Ocean. When the Kuroshio flows northward along the Philippine Islands, signals from the western Pacific are transmitted to the South China Sea through the Luzon Strait, thus affecting the hydrodynamic environment of the South China Sea. We analyze the spatial distribution and low-frequency variability of subsurface salinity in the South China Sea, and try to explain the relationship between the subsurface salinity in the South China Sea and the Pacific Decadal Oscillation (PDO); we also explore the change of the subsurface salinity in recent years. The results are as follows. 1) Driven by the subsurface cyclonic circulation, subsurface salinity at about 24-26 σθ decreases gradually from north to south counterclockwise starting from the Luzon Strait. 2) The low-frequency variability of subsurface salinity is significantly correlated with PDO. When the PDO is in the positive phase, the westward transport in the Luzon Strait is strengthened and the subsurface salinity increases. When the PDO is in the negative phase, the westward transport in the Luzon Strait is weakened and the subsurface salinity decreases, and the salinity change is directly affected by the horizontal circulation. 3) In recent years, the subsurface salinity has shown a trend of refreshing from 2006 to early 2014, and then increasing from 2014 to early 2017, lagging behind the PDO by about 10 months. Since 2017, the salinity decreased again.
图1 南海经向、纬向断面盐度(填色, 单位: ‰)和位势密度(等值线, 单位: σθ)分布a. 20°N断面; b. 118°E断面 Fig. 1 Vertical distributions of salinity (shading; units: ‰) and potential density (contour; units: σθ) in longitudinal and latitudinal sections of the South China Sea: a) 20°N section and b) 118°E section |
图4 南海次表层盐度的低频变化与PDO的关系a. PDO与EOF1时间系数比较(7~30年低通滤波); b. 盐度极大值年(a中绿色填充圆点)的盐度异常(填色, 单位: ‰)和流场异常(矢量, 单位: m·s-1); c. 盐度极小值年(a中绿色空心圆点)的盐度异常(填色, 单位: ‰)和流场异常(矢量, 单位: m·s-1) Fig. 4 (a) The relationship between low-frequency variability of subsurface salinity and PDO. Comparison of time coefficients between PDO and EOF1 (low-pass filtering for 7-30 years); b. salinity anomaly (shading; units: ‰) and current anomaly (vector; units: m·s-1) in the year of maximum salinity (green dots in a); c. salinity anomaly (shading; units: ‰) and current anomaly (vector; units: m·s-1) in the year of minimum salinity (green circles in a) |
图5 南海北部次表层盐度变化与PDO、纬向流异常的关系a. 盐度变化曲线(红线, 单位: ‰)和 PDO指数(蓝线), 黑色虚线为盐度线性变化趋势; b. 盐度异常曲线(红线, 单位: ‰)和纬向流异常(蓝线, 单位: m·s-1) Fig. 5 Relationships of subsurface salinity change with PDO and zonal current anomaly in the northern South China Sea: a) salinity change (red line; units: ‰) and PDO index (blue line), with the black dashed line representing the linear trend of salinity; and b) salinity anomaly (red line, units: ‰) and zonal current anomaly (blue line; units: m·s-1) |
图6 南海次表层盐度异常(填色, 单位: ‰)、流场(矢量, 单位: m·s-1)异常空间分布a.负异常(2012—2013年平均); b.正异常(2015—2016年平均) Fig. 6 Spatial distribution of subsurface salinity anomaly (shading; unit: ‰) and current anomaly (vector; unit: m·s-1) in the South China Sea: a) negative anomaly (averaged in 2012-2013) and b) positive anomaly (averaged in 2015-2016) |
[1] |
鲍颖 , 2007. 南海环流年际变化特征的初步研究[D]. 青岛: 中国海洋大学: 1-64.
|
[2] |
蔡树群, 苏纪兰, 甘子钧 , 等, 2002. 夏季南海上层环流动力机制的数值研究[J]. 海洋学报, 24(1):1-7.
|
[3] |
陈海花, 李洪平, 何林洁 , 等, 2015. 基于SODA数据集的南海海表面盐度分布特征与长期变化趋势分析[J]. 海洋技术学报, 34(4):48-52.
|
[4] |
谷德军, 王东晓, 袁金南 , 2004. 黑潮输送的异常及其与大尺度海气相互作用的关系[J]. 热带海洋学报, 23(6):30-39.
|
[5] |
赫崇本, 管秉贤 , 1984. 南海中部NE-SW向断面海水热盐结构以及海盆冷水来源的分析[J]. 海洋与湖沼, 15(5):411-418.
|
[6] |
刘长建, 杜岩, 张庆荣 , 等, 2008. 南海次表层和中层水团年平均和季节变化特征[J]. 海洋与湖沼, 39(1):55-64.
|
[7] |
刘秦玉, 李春, 胡瑞金 , 2010. 北太平洋的年代际振荡与全球变暖[J]. 气候与环境研究, 15(2):217-224.
|
[8] |
邱春华, 贾英来 , 2009. 南海北部深水海域温度以及盐度的季节及年际变化特征[J]. 中国海洋大学学报, 39(3):375-380, 386.
|
[9] |
田天, 魏皓 , 2005. 南海北部及巴士海峡附近的水团分析[J]. 中国海洋大学学报, 35(1):9-12, 28.
|
[10] |
王鼎琦, 方国洪, 邱婷 , 2017. 吕宋海峡黑潮脱落涡旋的特征分析[J]. 海洋与湖沼, 48(4):672-681.
|
[11] |
杨修群, 朱益民, 谢倩 , 等, 2004. 太平洋年代际振荡的研究进展[J]. 大气科学, 28(6):979-992.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
/
〈 | 〉 |