伶仃洋洪季潮波传播变形及不对称性规律分析
童朝锋(1973—), 男, 浙江宁波人, 副教授, 博士, 主要从事河口海岸动力学研究。E-mail: chaofengtong@hhu.edu.cn |
Copy editor: 姚衍桃
收稿日期: 2019-07-07
要求修回日期: 2019-09-16
网络出版日期: 2020-01-09
基金资助
国家重点研发计划项目(2017YFC0405400)
国家自然科学基金重点项目(51339005)
版权
Analysis of tidal wave propagation distortion and asymmetry in Lingding Bay during wet season
Received date: 2019-07-07
Request revised date: 2019-09-16
Online published: 2020-01-09
Supported by
National Key Research and Development Program of China(2017YFC0405400)
National Natural Science Foundation of China(51339005)
Copyright
珠江河口伶仃洋水域潮波传播变形及其不对称性关系对河口动力环境和物质输运产生影响。研究根据珠江口伶仃洋及东四口门19个潮位站2011年6月实测逐时潮位, 利用收缩河型沿程潮幅解析理论, 阐释伶仃洋从桂山岛上行沿程潮汐传播规律特征; 在调和分析基础上, 应用偏度理论和分潮组合分析方法, 阐明了伶仃洋东西岸及洪奇门、蕉门内潮汐不对称性分布特征, 对照数值研究结果, 指出伶仃洋至虎门之间水域导致潮汐不对称性的主控因素及响应规律。研究表明, 河口平面形态呈近似指数收缩特征的伶仃洋, 沿程潮幅的变化符合指数收缩型河口波幅解析变化规律, 东岸潮幅高于西岸的主要原因是东岸水深大于西岸, 其次是科氏力影响; 行进潮波虽受地形摩擦耗能及非线性作用下不同频率分潮间能量迁移的影响, 但收缩河口能量汇聚效应可以保证收缩段天文分潮潮幅减缓衰减甚至增加, 半日分潮能量汇聚效果强于全日分潮, 各非线性项作用促使浅水分潮产生并持续增能, 保证一定距离内沿程潮幅的增大; 潮汐不对称性的偏度由湾口落潮占优向湾顶涨潮占优发展, 在伶仃洋中部赤湾至金星港一线转为涨潮占优, 产生该现象的原因是自湾口向湾顶不同频率间天文分潮K1-O1-M2的相互作用, 导致表现为落潮优势潮的不对称性减弱, 而天文分潮M2和其对应的浅水分潮倍潮M4组合作用使涨潮优势偏度值的不对称性增强; 收缩河口形态属性要素中, 水深是影响潮不对称性的最主要因素。
童朝锋 , 司家林 , 张蔚 , 高祥宇 . 伶仃洋洪季潮波传播变形及不对称性规律分析[J]. 热带海洋学报, 2020 , 39(1) : 36 -52 . DOI: 10.11978/2019061
Tidal wave propagation and tidal asymmetry in the Pearl River Estuary and Lingding Bay water areas affect estuarine dynamic environment and material transport in the areas. Based on tidal level statistics during June 2011 to July 2011 measured by stations set up in four east estuaries in the Pearl River and Lingding Bay, the theory of convergent estuarine tidal amplitude along the way is used for obtaining an analytic solution, and characteristics of tidal wave propagating from Guishan Island toward upstream is illustrated. Based on harmonic analysis, theory of skewness and method of constituent combination, tidal asymmetry distribution characteristics of east and west coasts in Lingding Bay, Hongqi outlet and Jiao outlet are explained; contrasts with analytical results, main control factors and response regulation of water area between Lingding Bay to Hu Estuary are noted. Our research shows that in Lingding Bay, which is approximately consistent with exponential convergent estuary, the tidal amplitude nearly accords with the change rule of the tidal amplitude analytical solution in exponential convergent estuary. The reason why tidal amplitude in the east coast being higher than in the west coast is that the water depth of the east coast is larger than that of the west coast; secondly, tidal amplitude is impacted by the Coriolis force. Although propagating wave is influenced by roughness consumes energy, and by energy transfer among constituents with different frequencies caused by nonliner effect, the convergence effect of convergent estuary can make sure that amplitudes of astronomical constituents keep steady even rise up in convergent segment, and the impact extent of convergence effect in semi-diurnal constituent is larger than that in diurnal constituent. Each nonliner term’s effect promotes the generation of shallow water constituent and increases energy continuously, making amplitude of shallow water constituent rising within a distance. Skewness of tidal asymmetry changes from ebb dominance in bay mouth to flood dominance in bay bottom, and transform to flood dominance at the line of Chiwan to Jinxing Port, which is located in the middle of Lingding Bay. It suggests that the decrease of ebb dominance asymmetry, which is caused by interaction of astronomical constituents K1-O1-M2 with different frequency, and the increase of flood dominance asymmetry, which is caused by interaction of astronomical constituent M2 with its shallow water overtide M4, leads to the phenomenon. Water depth is the most important factor, which influences tidal asymmetry in properties of a convergent estuary.
表1 潮位站潮幅和涨落潮历时比例Tab. 1 Tidal amplitude and ratio of flood and ebb durations |
位置 | 测站名称 | 涨潮历时与落潮历时比值 | 潮差/m |
---|---|---|---|
伶仃洋东岸 | 桂山岛 | 1.01 | 1.09 |
内伶仃 | 0.91 | 1.31 | |
赤湾 | 0.86 | 1.34 | |
大铲码头 | 0.86 | 1.41 | |
正强码头 | 0.76 | 1.57 | |
舢板洲 | 0.74 | 1.55 | |
仙屋角 | 0.73 | 1.61 | |
伶仃洋西岸 | 九洲港 | 0.95 | 1.12 |
金星港 | 0.97 | 1.22 | |
横门东 | 0.79 | 1.26 | |
龙穴南 | 0.61 | 1.41 | |
南沙 | 0.60 | 1.39 | |
洪奇门 | 万顷沙西 | 0.65 | 1.26 |
冯马庙 | 0.62 | 1.23 | |
板沙尾 | 0.58 | 1.17 | |
横门 | 横门 | 0.65 | 1.19 |
中山港大桥 | 0.61 | 1.00 | |
马鞍 | 0.56 | 0.86 | |
小榄 | 0.52 | 0.67 |
表2 数值模型参数设置Tab. 2 Parameters setting of mathematical models |
组次 | 河型属性 | 边界条件 | |||||
---|---|---|---|---|---|---|---|
糙率曼宁参数 M/ (m1/3·s-1) | 收缩参数Lb/km | 收缩段长度Ls/km | 水深h/m | 上游流量Q/(m3·s-1) | 外海边界 | ||
0 | 60 | 30 | 60 | 5.5 | 100 | ${{a}_{{{K}_{1}}}}$=0.50m ${{a}_{{{\text{O}}_{1}}}}$=0.30m ${{a}_{{{\text{M}}_{\text{2}}}}}$=0.50m ${{a}_{{{\text{S}}_{\text{2}}}}}$=0.15m ${{g}_{{{\text{K}}_{\text{1}}}}}$=175.90° ${{g}_{{{\text{O}}_{\text{1}}}}}$=139.96° ${{g}_{{{\text{M}}_{\text{2}}}}}$=44.67° ${{g}_{{{\text{S}}_{\text{2}}}}}$=65.11° | |
1 | 50 | 30 | 60 | 5.5 | 100 | ||
40 | 30 | 60 | 5.5 | 100 | |||
30 | 30 | 60 | 5.5 | 100 | |||
2 | 60 | 20 | 42 | 5.5 | 100 | ||
60 | 40 | 84 | 5.5 | 100 | |||
60 | 50 | 105 | 5.5 | 100 | |||
60 | 30 | 60 | 3 | 100 | |||
3 | 60 | 30 | 60 | 10 | 100 | ||
60 | 30 | 60 | 15 | 100 | |||
60 | 30 | 60 | 5.5 | 2000 | |||
4 | 60 | 30 | 60 | 5.5 | 3000 | ||
60 | 30 | 60 | 5.5 | 5000 | |||
备注 | 收缩至等宽段宽度 5 km |
图9 收缩河口中M2分潮潮幅随收缩参数(a)、糙率曼宁参数(b)、水深变化(c)、流量(d)的变化Fig. 9 Variation of M2 constituents with convergent parameter (a), Manning roughness (b), water depth (c) and river discharge(d) |
图10 收缩河口中K1分潮潮幅随收缩参数(a)、糙率曼宁参数(b)、水深(c)、流量(d)的变化Fig. 10 Variation of K1 constituents with convergent parameter (a), Manning roughness (b), water depth (c) and river discharge(d) |
图11 收缩河口中O1分潮潮幅随收缩参数(a)、糙率曼宁参数(b)、水深(c)、流量(d)的变化Fig. 11 Variation of O1 constituents with convergent parameter (a), Manning roughness (b), water depth (c) and river discharge(d) |
图13 收缩河口中M4分潮潮幅随收缩参数(a)、糙率曼宁参数(b)、水深(c)、流量(d)的变化Fig. 13 Variation of M4 constituents with convergent parameter (a), Manning roughness (b), water depth (c) and river discharge(d) |
图14 收缩河口中MS4分潮潮幅随收缩参数(a)、糙率曼宁参数(b)、水深(c)、流量(d)的变化Fig. 14 Variation of MS4 constituents with convergent parameter (a), Manning roughness (b), water depth (c) and river discharge(d) |
图16 K1-O1-M2组合偏度值随收缩参数(a)、糙率曼宁参数(b)、水深(c)和流量(d)的变化Fig. 16 Variation of K1-O1-M2 combination skewness with convergent parameter (a), Manning roughness (b), water depth (c) and discharge (d) |
图17 M2-M4组合偏度值随收缩参数(a)、糙率曼宁参数(b)、水深(c)和流量(d)的变化Fig. 17 Variation of M2-M4 combination skewness with convergent parameter (a), Manning roughness (b), water depth (c) and discharge (d) |
图18 M2-S2-MS4组合偏度值随收缩参数(a)、糙率曼宁参数(b)、水深(c)和流量(d)的变化Fig. 18 Variation of M2-S2-MS4 combination skewness with convergent parameter (a), Manning roughness (b), water depth (c) and discharge (d) |
[1] |
丁芮, 陈学恩, 曲念东 , 2015. 珠江口及邻近海域潮波数值模拟——Ⅰ模型的建立和分析[J]. 中国海洋大学学报, 45(11):1-9.
|
[2] |
鲁盛 , 2016. 长江口潮波传播的非线性特征及影响机制研究[D]. 南京: 河海大学.
|
[3] |
欧素英, 杨清书, 杨昊 , 等, 2017. 河口三角洲径流和潮汐相互作用模型及应用[J]. 热带海洋学报, 36(5):1-8.
|
[4] |
杨明远, 严以新, 孔俊 , 等, 2008. 珠江口水流泥沙运动模拟研究[M]. 北京: 海洋出版社: 18-19.
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
/
〈 | 〉 |