热带海洋学报 ›› 2019, Vol. 38 ›› Issue (1): 1-10.doi: 10.11978/2018046CSTR: 32234.14.2018046

• •    下一篇

赤道太平洋海域上层海洋热含量及其变化机制的诊断分析*

李宁1,2(), 王晓春1,2()   

  1. 1. 南京信息工程大学 海洋科学学院, 江苏 南京 210044
    2. 江苏省海洋环境探测工程技术研究中心, 江苏 南京 210044
  • 收稿日期:2018-04-21 修回日期:2018-07-04 出版日期:2019-01-16 发布日期:2019-01-16
  • 作者简介:

    作者简介:李宁(1992—), 男, 江苏省连云港市人, 硕士, 研究方向为海气相互作用。Email: lining_deepwind@aliyun.com

  • 基金资助:
    国家自然科学重点基金项目(41630423);国家重点研发计划(2016YFC1401601);2015年度江苏省“双创计划”;*加州大学洛杉矶分校张洪博士、加州理工学院喷气推进实验室王欧博士、Dr. Dimitris Menemenlis、Dr. Ichiro Fukumori、麻省理工学院Dr. Gael Forget在使用MITgcm 及ECCO v4 产品方面提供了帮助;两位审稿人为本文的改进提出了许多有益建议, 特此一并致谢

Diagnostic analysis of upper-ocean heat content change in the equatorial Pacific and related mechanism

Ning LI1,2(), Xiaochun WANG1,2   

  1. 1. School of Marine Science, Nanjing University of Information Science & Technology, Nanjing 210044, China;
    2. Jiangsu Engineering Technology Research Center of Marine Environment Detection, Nanjing 210044, China
  • Received:2018-04-21 Revised:2018-07-04 Online:2019-01-16 Published:2019-01-16
  • Supported by:
    National Natural Science Foundation of China (41630423);National Key Research and Development Project (2016YFC1401601);2015 Program for Innovation Research and Entrepreneurship Team in Jiangsu Province

摘要:

基于1992—2015年国际共享的ECCO v4 (Estimating the Circulation and Climate of the Ocean Version 4)同化产品, 利用热含量控制方程定量地诊断赤道太平洋(118°E—75°W, 5°S—5°N, 0~300m)和Niño 3.4区(170°W—120°W, 5°S—5°N, 0~80m)这两块区域热含量变化机制。对于去掉季节平均后的年际变化, 在赤道太平洋地区, 时间趋势项主要由经向输送和海表热通量项共同驱动。通过5°N断面的输送决定了时间趋势项的幅值和正负符号。在Niño 3.4区, 时间趋势项主要由海表热通量项和热量输送项共同驱动, 其中垂向输送对总输送贡献最大。赤道太平洋地区经向热量输送异常领先于Niño 3.4区垂向热量输送异常, 这解释了在年际尺度上赤道太平洋热含量异常领先Niño 3.4指数变化的原因。尽管EP(Eastern Pattern)型El Niño和CP(Central Pattern)型El Niño有许多不同之处, 合成分析表明, 两类El Niño的共同点为: 在赤道太平洋地区, 两类El Niño事件的热量输送异常在发展期和衰退期由经向输送主导; 在Niño 3.4区, EP型El Niño和CP型El Niño的热量输送在发展期和衰退期由垂向输送主导。

关键词: 上层海洋热含量, 变化机制, El Niño, ECCO v4, 赤道太平洋

Abstract:

The ECCO v4 outputs from 1992 to 2015 is used to diagnose the heat content change in the equatorial Pacific box (118°E-75°W, 5°S-5°N, 0-300 m) and the Niño 3.4 box (170°-120°W, 5°S-5°N, 0-80 m). In the interannual time scale after removing the seasonal cycle, the temperature tendency term is driven by meridional heat transport and balanced by the surface heat flux term in the equatorial Pacific box. The transport across 5°N plays a dominant role in determining the magnitude and sign of temperature tendency term. For the Niño 3.4 box, the temperature tendency term of heat content is driven by the heat transport term and balanced by the surface heat flux term, with vertical transport playing an important role. The meridional heat transport of the equatorial Pacific box leads the vertical heat transport of the Niño 3.4 box on the interannual time scale, which explains why the heat content change of the equatorial Pacific leads the Niño 3.4 SST change by several months during the ENSO (El Nino-Southern Oscillation). Though there are subtle differences between the eastern Pacific and central Pacific ENSO events, two types of ENSO bear similarities in terms of heat content change mechanism. For the equatorial Pacific box, meridional heat transport plays a major role in determining its heat content change. For the Niño 3.4 box, vertical transport is the dominant term driving the heat content change in both developing and decaying stages of ENSO events.

Key words: upper-ocean heat content, change mechanism, El Niño, ECCO v4, equatorial Pacific