[1] |
陈鹿, 潘彬彬, 曹正良, 等, 2017. 自动剖面浮标研究现状及展望[J]. 海洋技术学报, 36(2):1-9.
|
|
CHEN LU, PAN BINBIN, CAO ZHENGLIANG, et al, 2017. Research status and prospects of automatic profiling floats[J]. Journal of Ocean Technology, 36(2):1-9 (in Chinese with English abstract).
|
[2] |
方尔正, 崔凯, 2005. 基于矢量水听器的一种时间方位历程目标跟踪方法[J]. 应用声学, 24(5):311-316.
|
|
FANG ERZHENG, CUI KAI, 2005. A target tracking method based on time-bearing display for vector sensor[J]. Applied Acoustics, 24(5):311-316 (in Chinese with English abstract).
|
[3] |
李峰, 2013. 自主水下航行器目标跟踪方法研究[D]. 哈尔滨: 哈尔滨工程大学.
|
|
LI FENG, 2013. Research on target tracking approach with autonomous underwater vehicle[D]. Harbin Harbin Engineering University (in Chinese with English abstract).
|
[4] |
李峥, 李宇, 黄勇, 等, 2012. 水下目标自主连续跟踪与定位算法研究[J]. 仪器仪表学报, 33(3):520-528.
|
|
LI ZHENG, LI YU, HUANG YONG, et al, 2012. Study of automatic continuous tracking and location algorithm for underwater target[J]. Chinese Journal of Scientific Instrument, 33(3):520-528 (in Chinese with English abstract).
|
[5] |
梁国龙, 张锴, 付进, 等, 2011. 单矢量水听器的高分辨方位估计应用研究[J]. 兵工学报, 32(8):986-990.
|
|
LIANG GUOLONG, ZHANG KAI, FU JIN, et al, 2011. Research on high-resolution direction-of-arrival estimation based on an acoustic vector-hydrophone[J]. Acta Armamentarii, 32(8):986-990 (in Chinese with English abstract).
|
[6] |
刘璐, 兰世泉, 肖灵, 等, 2017. 基于水下滑翔机的海洋环境噪声测量系统[J]. 应用声学, 36(4):370-376.
|
|
LIU LU, LAN SHIQUAN, XIAO LING, et al, 2017. Measurement system of ambient sea noise based on the underwater glider[J]. Journal of Applied Acoustics, 36(4):370-376 (in Chinese with English abstract).
|
[7] |
路振, 2013. 无人智能潜器水下目标探测跟踪技术研究[D]. 哈尔滨: 哈尔滨工程大学.
|
|
LU ZHEN, 2013. Study on underwater target detection and tracking of autonomous underwater vehicle[D]. Harbin Harbin Engineering University (in Chinese with English abstract).
|
[8] |
沈新蕊, 王延辉, 杨绍琼, 等, 2018. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 26(2):89-106.
|
|
SHEN XINRUI, WANG YANHUI, YANG SHAOQIONG, et al, 2018. Development of underwater gliders: an overview and prospect[J]. Journal of Unmanned Undersea Systems, 26(2):89-106 (in Chinese with English abstract).
|
[9] |
宋德枢, 梁国龙, 王燕, 2014. 机动目标DOA跟踪粒子滤波算法[J]. 信号处理, 30(7):861-866.
|
|
SONG DESHU, LIANG GUOLONG, WANG YAN, 2014. Particle filter algorithm for DOA tracking of maneuvering targets[J]. Journal of Signal Processing, 30(7):861-866 (in Chinese with English abstract).
|
[10] |
孙芹东, 笪良龙, 侯文姝, 等, 2015. 一种新型姿态实时修正矢量水听器的设计[J]. 声学技术, 34(2):304-307.
|
|
SUN QINDONG, DA LIANGLONG, HOU WENSHU, et al, 2015. Design of a new real-time gesture correction vector hydrophones[J]. Technical Acoustics, 34(2):304-307 (in Chinese with English abstract).
|
[11] |
孙芹东, 侯文姝, 王文龙, 等, 2016. 同振式三轴向矢量水听器设计与实现[J]. 传感技术学报, 29(6):952-956.
|
|
SUN QINDONG, HOU WENSHU, WANG WENLONG, et al, 2016. The design and implementation for three dimension co-vibrating vector hydrophone[J]. Chinese Journal of Sensors and Actuators, 29(6):952-956 (in Chinese with English abstract).
|
[12] |
王超, 孙芹东, 兰世泉, 等, 2018. 水下声学滑翔机目标探测性能南海试验分析[J]. 声学技术, 37(6):149-150.
|
|
WANG CHAO, SUN QINDONG, LAN SHIQUAN, et al, 2018. Underwater acoustic glider target detection performance trial analysis in the South China Sea[J]. Technical Acoustics, 37(6):149-150 (in Chinese).
|
[13] |
王超, 孙芹东, 张林, 等, 2019. 南中国海“G-Argo”声学浮标目标探测能力分析[J]. 应用声学, 38(6):1025-1032.
|
|
WANG CHAO, SUN QINDONG, ZHANG LIN, et al, 2019. Analysis of target detection capability of “G-Argo” acoustic buoy in South China Sea[J]. Journal of Applied Acoustics, 38(6):1025-1032 (in Chinese with English abstract).
|
[14] |
王文龙, 王超, 韩梅, 等, 2019. 矢量水听器在水下滑翔机上的应用研究[J]. 兵工学报, 40(12):2580-2586.
|
|
WANG WENLONG, WANG CHAO, HAN MEI, et al, 2019. Research on application of vector hydrophone onboard an underwater glider[J]. Acta Armamentarii, 40(12):2580-2586 (in Chinese with English abstract).
|
[15] |
吴艳群, 胡永明, 2010. 基于单矢量水听器的水面目标运动分析[J]. 声学技术, 29(4):361-364.
|
|
WU YANQUN, HU YONGMING, 2010. Analysis of surface target motion based on a single vector sensor[J]. Technical Acoustics, 29(4):361-364 (in Chinese with English abstract).
|
[16] |
杨燕, 孙秀军, 王延辉, 2015. 浅海型水下滑翔机技术研究现状分析[J]. 海洋技术学报, 34(4):7-14.
|
|
YANG YAN, SUN XIUJUN, WANG YANHUI, 2015. Analysis on the state-of-the-art shallow water underwater gliders[J]. Journal of Ocean Technology, 34(4):7-14 (in Chinese with English abstract).
|
[17] |
尹云龙, 杨明, 杨绍琼, 等, 2019. 基于水下滑翔机的海洋声学背景场观测技术[J]. 水下无人系统学报, 27(5):555-561.
|
|
YIN YUNLONG, YANG MING, YANG SHAOQIONG, et al, 2019. Research on observation technology of oceanic acoustic background field based on underwater glider[J]. Journal of Unmanned Undersea Systems, 27(5):555-561 (in Chinese with English abstract).
|
[18] |
袁华, 严必虎, 2016. 水下滑翔机在水声探测体系中的运用研究[J]. 现代防御技术, 44(1):128-133.
|
|
YUAN HUA, YAN BIHU, 2016. Application of autonomous underwater glider in acoustic detection system[J]. Modern Defense Technology, 44(1):128-133 (in Chinese with English abstract).
|
[19] |
周宏坤, 2016. 航空声纳浮标用矢量水听器及其悬挂技术研究[D]. 哈尔滨: 哈尔滨工程大学.
|
|
ZHOU HONGKUN, 2016. Research on airborne sonobuoy employed acoustic vector sensor and suspension technology[D]. Harbin Harbin Engineering University (in Chinese with English abstract).
|
[20] |
AKTAS M, OZKAN H, 2018. Acoustic direction finding using single acoustic vector sensor under high reverberation[J]. Digital Signal Processing, 75: 56-70.
|
[21] |
HOLMES J D, CAREY W M, LYNCH J F, et al, 2005. An autonomous underwater vehicle towed array for ocean acoustic measurements and inversions[C]// Europe oceans 2005. Brest, France: IEEE: 1058-1061.
|
[22] |
JIANG YONGMIN, OSLER J, 2013. Underwater source localization using a hydrophone-equipped glider[J]. The Journal of the Acoustical Society of America, 133(5):3526.
|
[23] |
LIU LU, XIAO LING, LAN SHIQUAN, et al, 2018. Using petrel Ⅱglider to analyze underwater noise spectrogram in the South China Sea[J]. Acoustics Australia, 46(2):151-158.
|
[24] |
NAJEEM S, KIRAN K, MALARKODI A, et al, 2017. Open lake experiment for direction of arrival estimation using acoustic vector sensor array[J]. Applied Acoustics, 119: 94-100.
|
[25] |
WANG XUHU, CHEN JIANFENG, HAN JING, et al, 2014. Optimization for the direction of arrival estimation based on single acoustic pressure gradient vector sensor[J]. International Journal of Naval Architecture and Ocean Engineering, 6(1):74-86.
doi: 10.2478/IJNAOE-2013-0164
|