[1] |
王风平, 周悦恒, 张新旭, 等, 2013. 深海微生物多样性[J]. 生物多样性, 21(4):445-455.
|
|
WANG FENGPING, ZHOU YUEHENG, ZHANG XINXU, et al, 2013. Biodiversity of deep-sea microorganisms[J]. Biodiversity Science, 21(4):445-455 (in Chinese with English abstract).
|
[2] |
张云怡, 曾令兵, 郭晓奎, 等, 2011. 细菌趋化过程中信号转导系统研究[J]. 中国微生态学杂志, 23(1):93-96 (in Chinese).
|
[3] |
臧扬, 高贝乐, 2017. 深海热液口Epsilon-变形菌的物种多样性与环境适应机理[J]. 微生物学报, 57(9):1392-1399.
|
|
ZANG YANG, GAO BEILE, 2017. Biodiversity and environmental adaptation of deep-sea hydrothermal vent Epsilon- proteobacteria[J]. Acta Microbiologica Sinica, 57(9):1392-1399 (in Chinese with English abstract).
|
[4] |
ALEXANDER R P, LOWENTHAL A C, HARSHEY R M, et al, 2010. CheV: CheW-like coupling proteins at the core of the chemotaxis signaling network[J]. Trends in Microbiology, 18(11):494-503.
doi: 10.1016/j.tim.2010.07.004
pmid: 20832320
|
[5] |
ALTSCHUL S F, MADDEN T L, SCHÄFFER A A, et al, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Research, 25(17):3389-3402.
pmid: 9254694
|
[6] |
BATTESTI A, BOUVERET E, 2012. The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli[J]. Methods, 58(4):325-334.
pmid: 22841567
|
[7] |
CAMPBELL B J, ENGEL A S, PORTER M L, et al, 2006. The versatile ε-proteobacteria: key players in sulphidic habitats[J]. Nature Reviews Microbiology, 4(6):458-468.
pmid: 16652138
|
[8] |
CASSIDY C K, HIMES B A, ALVAREZ F J, et al, 2015. CryoEM and computer simulations reveal a novel kinase conformational switch in bacterial chemotaxis signaling[J]. eLife, 4: e08419.
doi: 10.7554/eLife.08419
pmid: 26583751
|
[9] |
COLLINS K D, ANDERMANN T M, DRAPER J, et al, 2016. The Helicobacter pylori CZB cytoplasmic chemoreceptor TlpD forms an autonomous polar chemotaxis signaling complex that mediates a tactic response to oxidative stress[J]. Journal of Bacteriology, 198(11):1563-1575.
doi: 10.1128/JB.00071-16
pmid: 27002127
|
[10] |
CROOKS G E, HON G, CHANDONIA J M, et al, 2004. WebLogo: a sequence logo generator[J]. Genome Research, 14(6):1188-1190.
pmid: 15173120
|
[11] |
DELALEZ N J, WADHAMS G H, ROSSER G, et al, 2010. Signal-dependent turnover of the bacterial flagellar switch protein FliM[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(25):11347-11351.
pmid: 20498085
|
[12] |
ELLIOTT K T, ZHULIN I B, STUCKEY J A, et al, 2009. Conserved residues in the HAMP domain define a new family of proposed bipartite energy taxis receptors[J]. Journal of Bacteriology, 191(1):375-387.
pmid: 18952801
|
[13] |
GIBSON D G, YOUNG L, CHUANG R Y, et al, 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 6(5):343-345.
doi: 10.1038/nmeth.1318
pmid: 19363495
|
[14] |
GIOVANNELLI D, FERRIERA S, JOHNSON J, et al, 2011. Draft genome sequence of Caminibacter mediatlanticus strain TB-2 T, an epsilonproteobacterium isolated from a deep-sea hydrothermal vent [J]. Standards in Genomic Sciences, 5(1):135-143.
doi: 10.4056/sigs.2094859
pmid: 22180817
|
[15] |
GROSCHE A, SEKARAN H, PÉREZ-RODRÍGUEZ I, et al, 2015. Cetia pacifica gen. nov., sp. nov., a chemolithoautotrophic, thermophilic, nitrate-ammonifying bacterium from a deep-sea hydrothermal vent[J]. International Journal of Systematic and Evolutionary Microbiology, 65: 1144-1150.
pmid: 25604337
|
[16] |
GUMEROV V M, ORTEGA D R, ADEBALI O, et al, 2020. MiST 3.0: an updated microbial signal transduction database with an emphasis on chemosensory systems[J]. Nucleic Acids Research, 48(D1):D459-D464.
pmid: 31754718
|
[17] |
INAGAKI F, TAKAI K, KOBAYASHI H, et al, 2003. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur- oxidizing ε-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa trough[J]. International Journal of Systematic and Evolutionary Microbiology, 53(Pt 6):1801-1805.
pmid: 14657107
|
[18] |
KARATAN E, SAULMON M M, BUNN M W, et al, 2001. Phosphorylation of the response regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis[J]. Journal of Biological Chemistry, 276(47):43618-43626.
|
[19] |
KUMAR S, STECHER G, TAMURA K, 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 33(7):1870-1874.
pmid: 27004904
|
[20] |
LARKIN M A, BLACKSHIELDS G, BROWN N P, et al, 2007. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 23(21):2947-2948.
pmid: 17846036
|
[21] |
LERTSETHTAKARN P, OTTEMANN K M, HENDRIXSON D R, 2011. Motility and chemotaxis in Campylobacter and Helicobacter[J]. Annual Review of Microbiology, 65: 389-410.
pmid: 21939377
|
[22] |
LETUNIC I, BORK P, 2018. 20 years of the SMART protein domain annotation resource[J]. Nucleic Acids Research, 46(D1):D493-D496.
doi: 10.1093/nar/gkx922
pmid: 29040681
|
[23] |
LIU JUN, HU BO, MORADO D R, et al, 2012. Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells[J]. Proceedings of the National Academy of Sciences of the United States of America, 109(23):E1481-E1488.
pmid: 22556268
|
[24] |
MCNICHOL J, STRYHANYUK H, SYLVA S P, et al, 2018. Primary productivity below the seafloor at deep-sea hot springs[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(26):6756-6761.
pmid: 29891698
|
[25] |
MEYER J L, HUBER J A, 2014. Strain-level genomic variation in natural populations of Lebetimonas from an erupting deep-sea volcano[J]. The ISME Journal, 8(4):867-880.
pmid: 24257443
|
[26] |
NA S I, KIM Y O, YOON S H, et al, 2018. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction[J]. Journal of Microbiology, 56(4):280-285.
|
[27] |
NAKAGAWA S, TAKAI K, INAGAKI F, et al, 2005. Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the ε-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa trough[J]. International Journal of Systematic and Evolutionary Microbiology, 55(Pt 2):925-933.
pmid: 15774687
|
[28] |
ORTEGA D R, ZHULIN I B, 2016. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex[J]. PLoS Computational Biology, 12(2):e1004723.
doi: 10.1371/journal.pcbi.1004723
pmid: 26844549
|
[29] |
PARKINSON J S, HAZELBAUER G L, FALKE J J, 2015. Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update[J]. Trends in Microbiology, 23(5):257-266.
doi: 10.1016/j.tim.2015.03.003
pmid: 25834953
|
[30] |
PIÑAS G E, FRANK V, VAKNIN A, et al, 2016. The source of high signal cooperativity in bacterial chemosensory arrays[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(12):3335-3340.
doi: 10.1073/pnas.1600216113
pmid: 26951681
|
[31] |
PITTMAN M S, GOODWIN M, KELLY D J, 2001. Chemotaxis in the human gastric pathogen Helicobacter pylori: different roles for CheW and the three CheV paralogues, and evidence for CheV2 phosphorylation[J]. Microbiology, 147(Pt 9):2493-2504.
doi: 10.1099/00221287-147-9-2493
pmid: 11535789
|
[32] |
PORTER S L, WADHAMS G H, ARMITAGE J P, 2011. Signal processing in complex chemotaxis pathways[J]. Nature Reviews Microbiology, 9(3):153-165.
doi: 10.1038/nrmicro2505
pmid: 21283116
|
[33] |
RAO C V, GLEKAS G D, ORDAL G W, 2008. The three adaptation systems of Bacillus subtilis chemotaxis[J]. Trends in Microbiology, 16(10):480-487.
doi: 10.1016/j.tim.2008.07.003
pmid: 18774298
|
[34] |
ROSARIO M M, FREDRICK K L, ORDAL G W, et al, 1994. Chemotaxis in Bacillus subtilis requires either of two functionally redundant CheW homologs[J]. Journal of Bacteriology, 176(9):2736-2739.
doi: 10.1128/jb.176.9.2736-2739.1994
pmid: 8169224
|
[35] |
SCHÄFFER A A, ARAVIND L, MADDEN T L, et al, 2001. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements[J]. Nucleic Acids Research, 29(14):2994-3005.
pmid: 11452024
|
[36] |
SMITH J L, CAMPBELL B J, HANSON T E, et al, 2008. Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents[J]. International Journal of Systematic and Evolutionary Microbiology, 58(Pt 7):1598-1602.
doi: 10.1099/ijs.0.65435-0
pmid: 18599701
|
[37] |
SNELLING W J, MATSUDA M, MOORE J E, et al, 2005. Campylobacter jejuni[J]. Letters in Applied Microbiology, 41(4):297-302.
doi: 10.1111/j.1472-765X.2005.01788.x
pmid: 16162134
|
[38] |
STOCKER R, SEYMOUR J R, 2012. Ecology and physics of bacterial chemotaxis in the ocean[J]. Microbiology and Molecular Biology Reviews, 76(4):792-812.
doi: 10.1128/MMBR.00029-12
pmid: 23204367
|
[39] |
TAKAI K, NEALSON K H, HORIKOSHI K, 2004. Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the ε-Proteobacteria, isolated from a black smoker in a central Indian ridge hydrothermal field[J]. International Journal of Systematic and Evolutionary Microbiology, 54(Pt 1):25-32.
doi: 10.1099/ijs.0.02787-0
pmid: 14742455
|
[40] |
WADHAMS G H, ARMITAGE J P, 2004. Making sense of it all: bacterial chemotaxis[J]. Nature Reviews Molecular Cell Biology, 5(12):1024-1037.
pmid: 15573139
|
[41] |
WAITE D W, VANWONTERGHEM I, RINKE C, et al, 2017. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.)[J]. Frontiers in Microbiology, 8: 682.
doi: 10.3389/fmicb.2017.00682
pmid: 28484436
|
[42] |
WUICHET K, ZHULIN I B, 2010. Origins and diversification of a complex signal transduction system in prokaryotes[J]. Science Signaling, 3(128): ra50.
doi: 10.1126/scisignal.3128eg5
pmid: 20587802
|
[43] |
ZAHRINGER F, LACANNA E, JENAL U, et al, 2013. Structure and signaling mechanism of a zinc-sensory diguanylate cyclase[J]. Structure, 21(7):1149-1157.
pmid: 23769666
|
[44] |
ZAUTNER A E, TAREEN A M, GROß U, et al, 2012. Chemotaxis in Campylobacter jejuni[J]. European Journal of Microbiology and Immunology, 2(1):24-31.
doi: 10.1556/EuJMI.2.2012.1.5
pmid: 24611118
|
[45] |
ZIMMERMANN L, STEPHENS A, NAM S Z, et al, 2018. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core[J]. Journal of Molecular Biology, 430(15):2237-2243.
doi: 10.1016/j.jmb.2017.12.007
pmid: 29258817
|