热带海洋学报 ›› 2023, Vol. 42 ›› Issue (3): 1-18.doi: 10.11978/2022153CSTR: 32234.14.2022153

• 综述 •    下一篇

铁铝假说与海洋铝施肥增汇潜力展望*

周林滨1,2,3(), 黄良民1,3, 谭烨辉1,2,3()   

  1. 1.中国科学院南海海洋研究所 中国科学院热带海洋生物资源与生态重点实验室, 广东 广州 510301
    2.南方海洋科学与工程广东省实验室(广州), 广东 广州 511458
    3.中国科学院大学, 北京 100049
  • 收稿日期:2022-07-07 修回日期:2022-08-21 出版日期:2023-05-10 发布日期:2022-09-05
  • 作者简介:

    周林滨(1985—), 男, 山东省鄄城县人, 博士, 从事海洋生态学研究。email:

    *感谢匿名审稿专家提出的宝贵修改意见和建议。

  • 基金资助:
    南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0405); 广东省基础与应用基础研究基金项目(2019A1515011645); 国家留学基金资助(202004910004); 中国科学院南海海洋研究所自主部署项目(SCSIO202204); 广东省科技计划项目(2020B1212060001)

Iron-aluminum hypothesis and the potential of ocean aluminum fertilization as a carbon dioxide removal strategy

ZHOU Linbin1,2,3(), HUANG Liangmin1,3, TAN Yehui1,2,3()   

  1. 1. CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
    2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-07-07 Revised:2022-08-21 Online:2023-05-10 Published:2022-09-05
  • Supported by:
    Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0405); Guangdong Basic and Applied Basic Research Foundation(2019A1515011645); China Scholarship Council(202004910004); Development Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences(SCSIO202204); Guangdong Provincial Science and technology plan project(2020B1212060001)

摘要:

人为活动引起的二氧化碳(CO2)等温室气体排放是驱动全球变暖的主要因素。全球变暖对粮食、水资源、能源、经济安全等领域均产生了严重威胁。减缓全球变暖势在必行, 不仅需要大规模减少CO2等温室气体排放, 还需要大量部署CO2移除(carbon dioxide removal, CDR)技术(又称负排放技术), 主动从空气中移除CO2并长期封存, 尽快使全球CO2净排放减少为零, 达到“碳中和”。海洋占地球表面积的70%, 是最大的活跃碳库, 具有巨大的CO2吸收潜力。基于海洋的CDR是实现碳中和的必要途径, 海洋CDR理论、方法、技术研究已成为热点和前沿领域。目前, 海洋CDR的研究认知仍相对较弱, 具有广阔的发展空间。缓解全球变暖的迫切需求促使海洋碳汇基础理论和海洋CDR研究快速发展, 原创性进展不断出现。本文主要综述铁铝假说的理论基础, 探讨基于“海洋铝施肥”的CDR发展潜力。铁铝假说认为, 铝可增强上层海洋浮游植物固碳, 降低生源碳分解速率, 提高海洋生物泵效率, 增加碳向深海输出、封存, 调控海洋碳汇的形成, 影响大气中CO2的浓度。与铁一样, 铝可能也是影响地球历史时期和现代气候变化的关键因子。通过提高铁的利用效率和向深海碳输出效率, 铝可以弥补人工海洋铁施肥的不足, 赋予海洋铝施肥成为新型的基于自然碳汇的CDR方法和技术的潜力。作为一种CDR方法, 海洋铝施肥尽管具有潜在高效的特点, 但还处于较为初级的概念阶段。本文提出, 应当从上层海洋浮游植物固碳、生源碳向深海输出、碳的长期封存三个方面, 进一步研究铝增强海洋碳汇的作用机制, 完善铁铝假说和海洋铝施肥的理论基础; 并在不同时空尺度上检验海洋铝施肥的CDR效能及其潜在环境影响, 为基于海洋铝施肥的CDR技术开发和应用提供科学基础。

关键词: 碳中和, 二氧化碳移除, 负排放, 海洋碳汇, 铁铝假说, 海洋铝施肥

Abstract:

Human-induced emissions of greenhouse gases such as carbon dioxide (CO2) are the main drivers of global warming. Global warming poses a serious threat to the security of food, water resources, energy, economy, and other fields. Alleviating global warming is imperative. Not only does it require massive greenhouse gas emissions reduction, but also large-scale deployment of carbon dioxide removal (CDR) or negative emissions techniques to intentionally remove CO2 from the air and sequestrate it for a long period so that to decrease global net CO2 emissions to zero as soon as possible, and achieve "carbon neutrality". The ocean accounts for 70% of the earth's surface area and is the largest active carbon pool. It has a huge potential to absorb CO2. Ocean-based CDR is necessary to achieve carbon neutrality. The research on the theory, method, and technology of ocean CDR has become a hot spot and frontier field. At present, the knowledge of ocean CDR is still relatively limited, and there is a large space for development. The urgent need to mitigate global warming is promoting the rapid development of the basic theory of marine carbon sinks and ocean CDR research, and original progress is emerging. This paper mainly summarizes the theoretical basis of the Iron-Aluminum Hypothesis and discusses the potential of ocean aluminum fertilization as a CDR strategy. The iron-aluminum hypothesis indicates that aluminum can enhance carbon fixation by phytoplankton in the upper ocean, reduce the decomposition rate of biogenic carbon, improve the efficiency of the biological pump, increase carbon export and sequestration to the deep sea, regulate marine carbon sinks, and affect the concentration of CO2 in the atmosphere. Thereby, as well as iron, aluminum may be a key factor in influencing historical and modern climate changes. Aluminum improves the efficiency of iron use and carbon export to the deep ocean, which can make up for the shortage of artificial ocean iron fertilization, and endow ocean aluminum fertilization with the potential to become a new CDR method and technology based on natural carbon sinks. Despite its potential high efficiency, ocean aluminum fertilization as a CDR method is still nascent. We suggest further study on the mechanisms underlying the roles of aluminum in enhancing marine carbon sinks from the three aspects 1) carbon fixation by marine phytoplankton in the upper ocean, 2) biogenic carbon export to the deep ocean, and 3) long-term carbon sequestration, and thus to strengthen the theoretical basis of iron-aluminum hypothesis and ocean aluminum fertilization. We also propose to verify the CDR efficacy of ocean aluminum fertilization and its potential environmental impacts at different temporal and spatial scales. The above two works are expected to provide basic scientific knowledge for the development and application of ocean aluminum fertilization as a CDR strategy.

Key words: carbon neutrality, carbon dioxide removal, negative emission, marine carbon sink, iron-aluminum hypothesis, ocean aluminum fertilization