[1] |
焦念志, 2021. 研发海洋“负排放”技术支撑国家“碳中和”需求[J]. 中国科学院院刊, 36(2): 179-187.
|
|
JIAO NIANZHI, 2021. Developing ocean negative carbon emission technology to support national carbon neutralization[J]. Bulletin of Chinese Academy of Sciences, 36 (2): 179-187. (in Chinese with English abstract)
|
[2] |
焦念志, 戴民汉, 翦知湣, 等, 2022. 海洋储碳机制及相关生物地球化学过程研究策略[J]. 科学通报, 67(15): 1600-1606.
|
|
JIAO NIANZHI, DAI MINHAN, JIAN ZHIMIN, et al, 2022. Research strategies for ocean carbon storage mechanisms and effects[J]. Chinese Science Bulletin, 67(15): 1600-1606. (in Chinese with English abstract)
|
[3] |
焦念志, 刘纪化, 石拓, 等, 2021. 实施海洋负排放践行碳中和战略[J]. 中国科学: 地球科学, 51(4): 632-643. (in Chinese)
|
[4] |
刘纪化, 郑强, 2021. 从海洋碳汇前沿理论到海洋负排放中国方案[J]. 中国科学: 地球科学, 51(4): 644-652. (in Chinese)
|
[5] |
刘甲星, 周林滨, 柯志新, 等, 2017. 铝对海洋固氮蓝藻 Crocosphaerawatsonii 生长及固氮速率的影响[J]. 热带海洋学报, 36(2): 12-18.
doi: 10.11978/2016069
|
|
LIU JIAXING, ZHOU LINBIN, KE ZHIXIN, et al, 2017. Effect of aluminum on the growth and nitrogen fixation of a marine nitrogen-fixing cyanobacterium: Crocosphaera watsonii[J]. Journal of Tropical Oceanography, 36(2): 12-18. (in Chinese with English abstract)
|
[6] |
骆庭伟, 焦念志, 2022. 海洋负排放:为全球气候治理提供新方案[J]. 前沿科学, 16(2): 83-87 (in Chinese)
|
[7] |
秦大河, 翟盘茂, 2021, 中国气候与生态环境演变, 2021(第一卷科学基础)[M] // 秦大河, 丁永建, 翟盘茂, 等. 中国气候与生态环境演变评估报告. 北京 (In Chinese).
|
[8] |
史荣君, 李志红, 周林滨, 等, 2016. 溶解态铝对海洋浮游植物群落结构及聚球藻生长的影响[J]. 南方水产科学, 12(1): 1-8.
|
|
SHI RONGJUN, LI ZHIHONG, ZHOU LINBIN, et al, 2016. Influence of dissolved aluminum on marine phytoplankton community structure and growth of Synechococcus sp.[J]. South China Fisheries Science, 12(1): 1-8. (in Chinese with English abstract)
|
[9] |
doi: 10.19663/j.issn2095-9869.20220415001
|
|
TANG QISHENG, JIANG ZENGJIE, MAO YUZE, 2022. Clarification on the Definitions and its Relevant Issues of Fisheries Carbon Sink and Carbon Sink Fisheries[J]. Progress in Fishery Sciences, doi: 10.19663/j.issn2095-9869.20220415001. (in Chinese with English abstract)
doi: 10.19663/j.issn2095-9869.20220415001
|
[10] |
王文涛, 刘纪华, 揭晓蒙, 等, 2022. 海洋支撑碳中和技术体系框架构建的思考与建议[J]. 中国海洋大学学报(自然科学版), 52(3): 1-7.
|
|
WANG WENTAO, LIU JIHUA, JIE XIAOMENG, et al, 2022. Perspective of technology system in the ocean for carbon neutrality[J]. Periodical of Ocean Univeristy of China, 52(3): 1-7. (in Chinese with English abstract)
|
[11] |
王召伟, 任景玲, 闫丽, 等, 2013. 浮游植物对溶解态Al的清除作用实验研究[J]. 生态学报, 33(22): 7140-7147.
|
|
WANG ZHAOWEI, REN JINGLING, YAN LI, et al, 2013. Preliminary study on scavenging mechanism of dissolved aluminum by phytoplankton[J]. Acta Ecologica Sinica, 33(22): 7140-7147. (in Chinese with English abstract)
doi: 10.5846/stxb
|
[12] |
doi: 10.16418/j.issn.1000-3045.20211117011
|
|
YANG HONGSHENG, DING DEWEN, 2022. Marine ranching version 3.0: History, status and prospects. Bulletin of Chinese Academy of Sciences, 37(6): 832-839. doi: 10.16418/j.issn.1000-3045.20211117011. (in Chinese with English abstract)
doi: 10.16418/j.issn.1000-3045.20211117011
|
[13] |
杨宇峰, 罗洪添, 王庆, 等, 2021. 大型海藻规模栽培是增加海洋碳汇和解决近海环境问题的有效途径[J]. 中国科学院院刊, 36(3): 259-269.
|
|
YANG YUFENG, LUO HONGTIAN, WANG QING, et al, 2021. Large-scale cultivation of seaweed is effective approach to increase marine carbon sequestration and solve coastal environmental problems[J]. Bulletin of Chinese Academy of Sciences, 36(3): 259-269. (in Chinese with English abstract)
|
[14] |
于翠平, 潘志强, 陈杰, 等, 2012. 铝对茶树生长与生理特性影响的研究[J]. 植物营养与肥料学报, 18(1): 182-187. (in Chinese)
|
[15] |
于贵瑞, 郝天象, 朱剑兴, 2022a. 中国碳达峰、碳中和行动方略之探讨[J]. 中国科学院院刊, 37(4): 423-434.
|
|
YU GUIRUI, HAO TIANXIANG, ZHU JIANXING, 2022a. Discussion on action strategies of China’s carbon peak and carbon neutrality[J]. Bulletion of Chinese Academy of Sciences, 37(4): 423-434. (in Chinese with English abstract)
|
[16] |
于贵瑞, 朱剑兴, 徐丽, 等, 2022b. 中国生态系统碳汇功能提升的技术途径:基于自然解决方案[J]. 中国科学院院刊, 37(4): 490-501.
|
|
YU GUIRUI, ZHU JIANXING, XU LI, et al, 2022b. Technological approaches to enhance ecosystem carbon sink in China: Nature-based solutions[J]. Bulletin of Chinese Academy of Sciences, 37(4): 490-501. (in Chinese with English abstract)
|
[17] |
俞志明, 邹景忠, 马锡年, 1995. 粘土矿物去除赤潮生物的动力学研究[J]. 海洋与湖沼, 26(1): 1-6.
|
|
YU ZHIMING, ZOU JINGZHONG, MA XINIAN, 1995. Study on the kinetics of clays removing red tide organisms[J]. Oceanologia et Limnologia Sinica, 26(1): 1-6. (in Chinese with English abstract)
|
[18] |
瞿剑, 2021. 我国首个海上二氧化碳封存示范工程启动[N]. 科技日报, 2021-08-31, pp. 002. (in Chinese)
|
[19] |
张继红, 刘纪化, 张永雨, 等, 2021. 海水养殖践行 “海洋负排放” 的途径[J]. 中国科学院院刊, 36(3): 252-258.
|
|
ZHANG JIHONG, LIU JIHUA, ZHANG YONGYU, et al, 2021. Strategic approach for mariculture to practice “ocean negative carbon emission”[J]. Bulletin of Chinese Academy of Sciences, 36(3): 252-258. (in Chinese with English abstract)
|
[20] |
张武昌, 孙松, 2002. 铁假说和HNLC海区的现场铁加富实验[J]. 地球科学进展, 17(4): 613-616.
doi: 10.11867/j.issn.1001-8166.2002.04.0613
|
|
ZHANG WUCHANG, SUN SONG, 2002. Iron hypothesis and the in situ iron fertilization experiments in the HNLC regions[J]. Advance in Earth Sciences, 17(4): 613-616. (in Chinese with English abstract)
|
[21] |
周林滨, 谭烨辉, 黄良民, 2012. 沙尘气溶胶沉降对南海浮游植物生长影响初探[C]. // 中国海洋湖沼学会水环境分会中国环境科学学会海洋环境保护专业委员会, 2012年学术年会论文摘要集. 延吉: 中国海洋湖沼学会. (in Chinese)
|
[22] |
ABRAMSON L, WIRICK S, LEE C, et al, 2009. The use of soft X-ray spectromicroscopy to investigate the distribution and composition of organic matter in a diatom frustule and a biomimetic analog[J]. Deep-Sea Research Ⅱ, 56(18): 1369-1380.
|
[23] |
ANDERSON R P, TOSCA N J, CINQUE G, et al, 2020. Aluminosilicate haloes preserve complex life approximately 800 million years ago[J]. Interface Focus, 10(4): 20200011.
|
[24] |
ARAI T, SATO Y, INOUE S, 1990. Reaction of carbon dioxide with (porphyrinato) aluminum thiolates[J]. Chemistry Letters, (4): 551-554.
|
[25] |
BACH L T, BOYD P W, 2021. Seeking natural analogs to fast-forward the assessment of marine CO2 removal[J]. Proceedings of the National Academy of Sciences, 118(40): e2106147118.
|
[26] |
BARBER A, BRANDES J, LERI A, et al, 2017. Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron[J]. Scientific Reports, 7(1): 366.
doi: 10.1038/s41598-017-00494-0
pmid: 28336935
|
[27] |
BECK L, GEHLEN M, FLANK A M, et al, 2002. The relationship between Al and Si in biogenic silica as determined by PIXE and XAS[J]. Nuclear Instruments & Methods in Physics Research B, 189(1-4): 180-184.
|
[28] |
BERTRAM C, MERK C, 2020. Public perceptions of ocean-based carbon dioxide removal: The nature-engineering divide?[J]. Frontiers in Climate, 2: 594194.
doi: 10.3389/fclim.2020.594194
|
[29] |
BLAIN S, QUEGUINER B, ARMAND L, et al, 2007. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean[J]. Nature, 446(7139): 1070-1074.
doi: 10.1038/nature05700
|
[30] |
BLATTMANN T M, LIU Z, ZHANG Y, et al, 2019. Mineralogical control on the fate of continentally derived organic matter in the ocean[J]. Science, 366(6466): 742-745.
doi: 10.1126/science.aax5345
pmid: 31582525
|
[31] |
BOJÓRQUEZ-QUINTAL E, ESCALANTE-MAGAÑA C, ECHEVARRÍA-MACHADO I, et al, 2017. Aluminum, a friend or foe of higher plants in acid soils[J]. Frontiers in Plant Science, 8: 1767.
doi: 10.3389/fpls.2017.01767
|
[32] |
BOYD P W, JICKELLS T, LAW C S, et al, 2007. Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions[J]. Science, 315(5812): 612-617.
pmid: 17272712
|
[33] |
BRENT K, MCGEE J, MCDONALD J, et al, 2018. International law poses problems for negative emissions research[J]. Nature Climate Change, 8(6): 451-453.
doi: 10.1038/s41558-018-0181-2
|
[34] |
BUYLOVA A, FRIDAHL M, NASIRITOUSI N, et al, 2021. Cancel (out) emissions? The envisaged role of carbon dioxide removal technologies in long-term national climate strategies[J]. Frontiers in Climate, 3: 675499.
doi: 10.3389/fclim.2021.675499
|
[35] |
CABANES D J E, NORMAN L, SANTOS-ECHEANDÍA J, et al, 2017. First evaluation of the role of salp fecal pellets on iron biogeochemistry[J]. Frontiers in Marine Science, 3: 289.
|
[36] |
CHEN YAJU, LUO RONGCHUANG, XU QIQIANG, et al, 2016. State‐of‐the‐art aluminum porphyrin‐based heterogeneous catalyst for the chemical fixation of CO2 into cyclic carbonates at ambient conditions[J]. Chem Cat Chem, 9(5): 767-773.
|
[37] |
DAI MINHAN, SU JIANZHONG, ZHAO YANGYANG, et al, 2022. Carbon fluxes in the coastal ocean: Synthesis, boundary processes and future trends[J]. Annual Review of Earth and Planetary Sciences, 50(1): 593-626.
doi: 10.1146/earth.2022.50.issue-1
|
[38] |
DE ANDRADE L R M, BARROS L M G, ECHEVARRIA G F, et al, 2011. Al-hyperaccumulator Vochysiaceae from the Brazilian Cerrado store aluminum in their chloroplasts without apparent damage[J]. Environmental and Experimental Botany, 70(1): 37-42.
doi: 10.1016/j.envexpbot.2010.05.013
|
[39] |
DE BAAR H J, GERRINGA L J, LAAN P, et al, 2008. Efficiency of carbon removal per added iron in ocean iron fertilization[J]. Marine Ecology Progress Series, 364: 269-282.
doi: 10.3354/meps07548
|
[40] |
DIAZ J M, HANSEL C M, VOELKER B M, et al, 2013. Widespread production of extracellular superoxide by heterotrophic bacteria[J]. Science, 340(6137): 1223-1226.
doi: 10.1126/science.1237331
pmid: 23641059
|
[41] |
DIAZ J M, PLUMMER S, 2018. Production of extracellular reactive oxygen species by phytoplankton: past and future directions[J]. Journal of Plankton Research, 40(6): 655-666.
doi: 10.1093/plankt/fby039
pmid: 30487658
|
[42] |
DIXIT S, VAN CAPPELLEN P, VAN BENNEKOM A J, 2001. Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments[J]. Marine Chemistry, 73(3-4): 333-352.
doi: 10.1016/S0304-4203(00)00118-3
|
[43] |
EXLEY C, 2004. The pro-oxidant activity of aluminum[J]. Free Radical Biology and Medicine, 36(3): 380-387.
pmid: 15036357
|
[44] |
EXLEY C, 2009. Darwin, natural selection and the biological essentiality of aluminium and silicon[J]. Trends in Biochemical Sciences, 34(12): 589-593.
doi: 10.1016/j.tibs.2009.07.006
pmid: 19773172
|
[45] |
EXLEY C, 2013. Aluminum in Biological Systems[M] // KRETSINGER R H, UVERSKY V N, PERMYAKOV E A, Encyclopedia of Metalloproteins. New York: Springer New York, 33-34.
|
[46] |
EXLEY C, 2017. The aluminium age[EB/OL] (2017-03-21) [2022-07-07]. https://www.hippocraticpost.com/mens-health/the-aluminium-age/
|
[47] |
EXLEY C, Guerriero G, Lopez X, 2019. Silicic acid: The omniscient molecule[J]. Science of The Total Environment, 665: 432-437.
doi: 10.1016/j.scitotenv.2019.02.197
|
[48] |
EXLEY C, MOLD M J, 2015. The binding, transport and fate of aluminium in biological cells[J]. Journal of Trace Elements in Medicine and Biology, 30: 90-95.
doi: 10.1016/j.jtemb.2014.11.002
pmid: 25498314
|
[49] |
FAWZY S, OSMAN A I, DORAN J, et al, 2020. Strategies for mitigation of climate change: a review[J]. Environmental Chemistry Letters, 18(6): 2069-2094.
doi: 10.1007/s10311-020-01059-w
|
[50] |
FRIEDLINGSTEIN P, JONES M W, O'SULLIVAN M, et al, 2022. Global carbon budget 2021[J]. Earth System Science Data, 14(4): 1917-2005.
doi: 10.5194/essd-14-1917-2022
|
[51] |
GALÁN-MARTÍN Á, VÁZQUEZ D, COBO S, et al, 2021. Delaying carbon dioxide removal in the European Union puts climate targets at risk[J]. Nature Communications, 12(1): 6490.
doi: 10.1038/s41467-021-26680-3
|
[52] |
GATTUSO J-P, WILLIAMSON P, DUARTE C M, et al, 2021. The potential for ocean-based climate action: Negative emissions technologies and beyond[J]. Frontiers in Climate, 2(37): 575716.
doi: 10.3389/fclim.2020.575716
|
[53] |
GEHLEN M, BECK L, CALAS G, et al, 2002. Unraveling the atomic structure of biogenic silica: evidence of the structural association of Al and Si in diatom frustules[J]. Geochimica et Cosmochimica Acta, 66(9): 1601-1609.
doi: 10.1016/S0016-7037(01)00877-8
|
[54] |
GESAMP, BOETTCHER M, CHAI F, et al, 2019. High level review of a wide range of proposed marine geoengineering techniques. In, edited by Philip Boyd and Chris Vivian. 4 Albert Embankment, London SE17SR.
|
[55] |
GILLMORE M L, GOLDING L A, ANGEL B M, et al, 2016. Toxicity of dissolved and precipitated aluminium to marine diatoms[J]. Aquatic Toxicology, 174: 82-91.
doi: 10.1016/j.aquatox.2016.02.004
pmid: 26921729
|
[56] |
GOLDING L A, ANGEL B M, BATLEY G E, et al, 2015. Derivation of a water quality guideline for aluminium in marine waters[J]. Environmental Toxicology and Chemistry, 34(1): 141-151.
doi: 10.1002/etc.2771
pmid: 25318392
|
[57] |
GÜSSOW K, PROELSS A, OSCHLIES A, et al, 2015. Ocean iron fertilization: time to lift the research taboo[M]. in Climate Change Geoengineering Philosophical Perspectives, Legal Issues Cambridge, UK: Cambridge University Press: 242-262.
|
[58] |
HAJIBOLAND R, BAHRAMI RAD S, BARCELÓ J, et al, 2013. Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis)[J]. Journal of Plant Nutrition and Soil Science, 176(4): 616-625.
doi: 10.1002/jpln.v176.4
|
[59] |
HANSEL C M, DIAZ J M, 2021. Production of extracellular reactive oxygen species by marine biota[J]. Annual Review of Marine Science, 13(1): 177-200.
doi: 10.1146/marine.2021.13.issue-1
|
[60] |
HARRISON K G, 2000. Role of increased marine silica input on paleo-pCO2 levels[J]. Paleoceanography, 15(3): 292-298.
doi: 10.1029/1999PA000427
|
[61] |
HEMINGWAY J D, ROTHMAN D H, GRANT K E, et al, 2019. Mineral protection regulates long-term global preservation of natural organic carbon[J]. Nature, 570(7760): 228-231.
doi: 10.1038/s41586-019-1280-6
|
[62] |
HIRAI Y, AIDA T, INOUE S, 1989. Artificial photosynthesis of β-ketocarboxylic acids from carbon dioxide and ketones via enolate complexes of aluminum porphyrin[J]. Journal of the American Chemical Society, 111(8): 3062-3063.
doi: 10.1021/ja00190a049
|
[63] |
HWANG J, DRUFFEL E R M, EGLINTON T I, 2010. Widespread influence of resuspended sediments on oceanic particulate organic carbon: Insights from radiocarbon and aluminum contents in sinking particles[J]. Global Biogeochemical Cycles, 24(4): GB4016.
|
[64] |
INOUE S, TAKEDA N, 1977. Reaction of carbon dioxide with tetraphenylporphinatoaluminium ethyl in visible light[J]. Bulletin of the Chemical Society of Japan, 50(4): 984-986.
doi: 10.1246/bcsj.50.984
|
[65] |
IOC-R, 2021. Integrated Ocean Carbon Research: A Summary of Ocean Carbon Research, and Vision of Coordinated Ocean Carbon Research and Observations for the Next Decade[R/OL]. [2022-07-07]. https://unesdoc.unesco.org/ark:/48223/pf0000376708
|
[66] |
IPCC, 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhous Gas Inventories: Wetlands[R/OL]. [2022-07-07]. https://www.ipcc.ch/publication/2013-supplement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories-wetlands/
|
[67] |
IPCC, 2018. Global Warming of 1. 5℃[R/OL]. [2022-07-07]. https://www.ipcc.ch/sr15/
|
[68] |
IPCC, 2022. Climate change 2022: Mitigation of climate change[R/OL]. [2022-07-07]. https://www.ipcc.ch/report/ar6/wg3/
|
[69] |
JIANG H-X, CHEN L-S, ZHENG J-G, et al, 2008. Aluminum-induced effects on Photosystem Ⅱ photochemistry in Citrus leaves assessed by the chlorophyll a fluorescence transient[J]. Tree Physiology, 28(12): 1863-1871.
doi: 10.1093/treephys/28.12.1863
|
[70] |
JIAO NIANZHI, ZHENG QIANG, 2011. The microbial carbon pump: from genes to ecosystems[J]. Applied and Environmental Microbiology, 77(21): 7439-7444.
doi: 10.1128/AEM.05640-11
pmid: 21873483
|
[71] |
KÖHLER L, MACHILL S, WERNER A, et al, 2017. Are diatoms “green” aluminosilicate synthesis microreactors for future catalyst production?[J]. Molecules, 22(12): 2232.
doi: 10.3390/molecules22122232
|
[72] |
KONING E, GEHLEN M, FLANK A M, et al, 2007. Rapid post-mortem incorporation of aluminum in diatom frustules: Evidence from chemical and structural analyses[J]. Marine Chemistry, 106(1-2): 208-222.
doi: 10.1016/j.marchem.2006.06.009
|
[73] |
KÜPPER H, ŠETLÍK I, SPILLER M, et al, 2002. Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation[J]. Journal of Phycology, 38(3): 429-441.
|
[74] |
LALONDE K, MUCCI A, OUELLET A, et al, 2012. Preservation of organic matter in sediments promoted by iron[J]. Nature, 483: 198-200.
doi: 10.1038/nature10855
|
[75] |
LAMBERT F, DELMONTE B, PETIT J R, et al, 2008. Dust-climate couplings over the past 800, 000 years from the EPICA Dome C ice core[J]. Nature, 452(7187): 616-619.
doi: 10.1038/nature06763
|
[76] |
LELEYTER L, BARAUD F, GIL O, et al, 2016. Aluimpact impact on the growth of benthic diatom. In Marine Sediments: Formation, Distribution and Environmental Impacts, edited by Shirley Williams. Nova Science Publishers: 61-79.
|
[77] |
LI Z, XING F, XING D, 2012. Characterization of target site of aluminum phytotoxicity in photosynthetic electron transport by fluorescence techniques in tobacco leaves[J]. Plant and Cell Physiology, 53(7): 1295-1309.
doi: 10.1093/pcp/pcs076
pmid: 22611177
|
[78] |
LIU JIAXING, ZHOU LINBIN, LI GANG, et al, 2018a. Beneficial effects of aluminum enrichment on nitrogen-fixing cyanobacteria in the South China Sea[J]. Marine Pollution Bulletin, 129(1): 142-150.
doi: 10.1016/j.marpolbul.2018.02.011
|
[79] |
LIU, JIHUA, ROBINSON C, WALLACE D, et al, 2022. Ocean negative carbon emissions: A new UN Decade program[J]. The Innovation 3(5): 100302
|
[80] |
LIU QIAN, GUO XIANGHUI, YIN ZHIQIANG, et al, 2018b. Carbon fluxes in the China Seas: An overview and perspective[J]. Science China Earth Sciences, 61(11): 1564-1582.
doi: 10.1007/s11430-017-9267-4
|
[81] |
LIU QINGXIA, ZHOU LINBIN, LIU FENGJIE, et al, 2019. Uptake and subcellular distribution of aluminum in a marine diatom[J]. Ecotoxicology and Environmental Safety, 169: 85-92.
doi: S0147-6513(18)31100-X
pmid: 30439583
|
[82] |
LIU YANG, CAO XINGHUA, YU ZHIMING, et al, 2016. Controlling harmful algae blooms using aluminum-modified clay[J]. Marine Pollution Bulletin, 103(1): 211-219.
doi: 10.1016/j.marpolbul.2015.12.017
|
[83] |
LOOMIS R, COOLEY S R, COLLINS J R, et al, 2022. A code of conduct is imperative for ocean carbon dioxide removal research[J]. Frontiers in Marine Science, 9: 872800.
doi: 10.3389/fmars.2022.872800
|
[84] |
LORIUS C, JOUZEL J, RAYNAUD D, et al, 1990. The ice-core record: climate sensitivity and future greenhouse warming[J]. Nature, 347(6289): 139-145.
doi: 10.1038/347139a0
|
[85] |
MACDONALD T L, MARTIN R B, 1988. Aluminum ion in biological systems[J]. Trends in Biochemical Sciences, 13(1): 15-19.
pmid: 3072691
|
[86] |
MACHILL S, KOHLER L, UEBERLEIN S, et al, 2013. Analytical studies on the incorporation of aluminium in the cell walls of the marine diatom Stephanopyxis turris[J]. Biometals, 26(1): 141-150.
doi: 10.1007/s10534-012-9601-3
|
[87] |
MALTA P G, ARCANJOSILVA S, RIBEIRO C, et al, 2016. Rudgea viburnoides (Rubiaceae) overcomes the low soil fertility of the Brazilian Cerrado and hyperaccumulates aluminum in cell walls and chloroplasts[J]. Plant and Soil, 408: 369-384.
doi: 10.1007/s11104-016-2926-x
|
[88] |
MAMET R, SCHARF R, ZIMMELS Y, et al, 1996. Mechanism of aluminium-induced porphyrin synthesis in bacteria[J]. Biometals, 9(1): 73-77.
|
[89] |
MARTIN J H, 1990. Glacial-interglacial CO2 change: The Iron Hypothesis[J]. Paleoceanography, 5(1): 1-13.
doi: 10.1029/PA005i001p00001
|
[90] |
MARTIN P, VAN DER LOEFF M R, CASSAR N, et al, 2013. Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX[J]. Global Biogeochemical Cycles, 27(3): 871-881.
doi: 10.1002/gbc.v27.3
|
[91] |
MARTÍNEZ-GARCIA A, ROSELL-MELÉA, JACCARD S L, et al, 2011. Southern Ocean dust-climate coupling over the past four million years[J]. Nature, 476(7360): 312-315.
doi: 10.1038/nature10310
|
[92] |
MATHEW S, KUTTASSERY F, GOMI Y, et al, 2015. Photochemical oxygenation of cyclohexene with water sensitized by aluminium (Ⅲ) porphyrins with visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 313: 137-142.
doi: 10.1016/j.jphotochem.2015.06.001
|
[93] |
MENZEL BARRAQUETA J-L, SAMANTA S, ACHTERBERG E P, et al, 2020. A first global oceanic compilation of observational dissolved aluminum data with regional statistical data treatment[J]. Frontiers in Marine Science, 7: 468.
doi: 10.3389/fmars.2020.00468
|
[94] |
MENZEL D W, HULBURT E M, TYTHER J H, 1963. The effects of enriching Sargasso sea water on the production and species composition of the phytoplankton[J]. Deep Sea Research and Oceanographic Abstracts, 10(3): 209-219.
doi: 10.1016/0011-7471(63)90357-7
|
[95] |
MERINO C, FONTAINE S, PALMA G, et al, 2017. Effect of aluminium on mineralization of water extractable organic matter and microbial respiration in southern temperate rainforest soils[J]. European Journal of Soil Biology, 82: 56-65.
doi: 10.1016/j.ejsobi.2017.08.003
|
[96] |
MEYER-OHLENDORF N, 2021. Carbon dioxide removal strategy for the EU[R/OL]. (2021-10-25) [2022-07-07]. https://www.ecologic.eu/sites/default/files/publication/2021/30008-EU-CDR-Strategy-2021-web.pdf
|
[97] |
MEYSMAN F J R, MONTSERRAT F, 2017. Negative CO2emissions via enhanced silicate weathering in coastal environments[J]. Biology Letters, 13(4): 20160905.
|
[98] |
MIHAILOVIC N, DRAZIC G, VUCINIC Z, 2008. Effects of aluminium on photosynthetic performance in Al-sensitive and Al-tolerant maize inbred lines[J]. Photosynthetica, 46(3): 476-480.
|
[99] |
MIYASAKA S C, TSUMURA T, SAKAI W S, et al, 1997. Aluminum and calcium effects on photosynthesis and chlorophyll fluorescence in taro[M] // TADAO ANDO, KOUNOSUKE FUJITA, TADAHIKO MAE, et al. Plant Nutrition for Sustainable Food Production and Environment. Tokyo, Japan: Springer Netherlands: 905-906.
|
[100] |
MOORE C M, MILLS M M, ARRIGO K R, et al, 2013. Processes and patterns of oceanic nutrient limitation[J]. Nature Geoscience, 6(9): 701-710.
doi: 10.1038/ngeo1765
|
[101] |
MORAN S B, MOORE R M, 1988. Evidence from mesocosm studies for biological removal of dissolved aluminium from sea water[J]. Nature, 335(6192): 706-708.
doi: 10.1038/335706a0
|
[102] |
MOUSTAKAS M, OUZOUNIDOU G, LANNOYE R, 1995. Aluminum effects on photosynthesis and elemental uptake in an aluminum‐tolerant and non‐tolerant wheat cultivar[J]. Journal of Plant Nutrition, 18(4): 669-683.
doi: 10.1080/01904169509364930
|
[103] |
MUJIKA J I, REZABAL E, MERCERO J M, et al, 2014. Aluminium in biological environments: A computational approach[J]. Computational and Structural Biotechnology Journal, 9(15): e201403002.
|
[104] |
MUJIKA J I, RUIPÉREZ F, INFANTE I, et al, 2011. Pro-oxidant Activity of Aluminum: Stabilization of the Aluminum Superoxide Radical Ion[J]. The Journal of Physical Chemistry A, 115(24): 6717-6723.
doi: 10.1021/jp203290b
|
[105] |
MÜLLER R D, MATHER B, DUTKIEWICZ A, et al, 2022. Evolution of Earth’s tectonic carbon conveyor belt[J]. Nature, 605(7911): 629-639.
doi: 10.1038/s41586-022-04420-x
|
[106] |
NEMET G F, CALLAGHAN M W, CREUTZIG F, et al, 2018. Negative emissions—Part 3: Innovation and upscaling[J]. Environmental Research Letters, 13(6): 063003.
doi: 10.1088/1748-9326/aabff4
|
[107] |
NORTHROP E, RUFFO S, TARASKA G, et al, 2021. Enhancing nationally determined contributions:Opportunities for ocean-based climate action. In: Washington, DC: World Resources Institute, 2021-1-19.
|
[108] |
OSCHLIES A, KOEVE W, RICKELS W, et al, 2010. Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization[J]. Biogeosciences, 7(12): 4017-4035.
doi: 10.5194/bg-7-4017-2010
|
[109] |
OSCHLIES A, REHDER G, RHEIN M, 2020. Marine carbon sinks in decarbonization pathways[R/OL]. (2020-02) [2022-07-07]. https://www.allianzeeresforschung.de/app/uploads/2020/02/researchmissionmarinecarbonsinksindecarbonizationpathways_feb2020.pdf
|
[110] |
PEREIRA L B, TABALDI L A, GONÇALVES J F, et al, 2006. Effect of aluminum on δ-aminolevulinic acid dehydratase (ALA-D) and the development of cucumber (Cucumis sativus)[J]. Environmental and Experimental Botany, 57(1-2): 106-115.
doi: 10.1016/j.envexpbot.2005.05.004
|
[111] |
PIMENTEL VIEIRA V L, ROCHA J B T, SCHETINGER M R C, et al, 2000. Effect of aluminum on δ-aminolevulinic acid dehydratase from mouse blood[J]. Toxicology Letters, 117(1-2): 45-52.
doi: 10.1016/S0378-4274(00)00233-2
|
[112] |
PLANK T, MANNING C E, 2019. Subducting carbon[J]. Nature, 574(7778): 343-352.
doi: 10.1038/s41586-019-1643-z
|
[113] |
POLLARD R T, SALTER I, SANDERS R J, et al, 2009. Southern Ocean deep-water carbon export enhanced by natural iron fertilization[J]. Nature, 457(7229): 577-580.
doi: 10.1038/nature07716
|
[114] |
REN JING-LING, ZHANG GUO-LING, ZHANG JING, et al, 2011. Distribution of dissolved aluminum in the Southern Yellow Sea: Influences of a dust storm and the spring bloom[J]. Marine Chemistry, 125(1-4): 69-81.
doi: 10.1016/j.marchem.2011.02.004
|
[115] |
RICKELS W, REITH F, KELLER D, et al, 2018. Integrated assessment of carbon dioxide removal[J]. Earth's future, 6(3): 565-582.
doi: 10.1002/eft2.v6.3
|
[116] |
ROSE A L, 2012. The influence of extracellular superoxide on iron redox chemistry and bioavailability to aquatic microorganisms[J]. Frontiers in Microbiology, 3: 124.
doi: 10.3389/fmicb.2012.00124
pmid: 22514548
|
[117] |
ROSE A L, WAITE T D, 2005. Reduction of organically complexed ferric iron by superoxide in a simulated natural water[J]. Environmental Science & Technology, 39(8): 2645-2650.
doi: 10.1021/es048765k
|
[118] |
RUIPÉREZ F, MUJIKA J I, UGALDE J M, et al, 2012. Pro-oxidant activity of aluminum: Promoting the Fenton reaction by reducing Fe(Ⅲ) to Fe(Ⅱ)[J]. Journal of Inorganic Biochemistry, 117: 118-123.
doi: 10.1016/j.jinorgbio.2012.09.008
|
[119] |
SAÇAN M T, OZTAY F, BOLKENT S, 2007. Exposure of Dunaliella tertiolecta to lead and aluminum: Toxicity and effects on ultrastructure[J]. Biological Trace Element Research, 120(1-3): 264-272.
doi: 10.1007/s12011-007-8016-4
|
[120] |
SANTANA-CASIANO J M, GONZALEZ-DAVILA M, LAGLERA L M, et al, 1997. The influence of zinc, aluminum and cadmium on the uptake kinetics of iron by algae[J]. Marine Chemistry, 59(1-2): 95-111.
doi: 10.1016/S0304-4203(97)00068-6
|
[121] |
SCHARF R, MAMET R, ZIMMELS Y, et al, 1994. Evidence for the interference of aluminum with bacterial porphyrin biosynthesis[J]. Biometals, 7(2): 135-141.
pmid: 8148615
|
[122] |
SCHNEIDER R J, ROE K L, HANSEL C M, et al, 2016. Species-level variability in extracellular production rates of reactive oxygen species by diatoms[J]. Frontiers in Chemistry, 4: 5.
doi: 10.3389/fchem.2016.00005
pmid: 27066475
|
[123] |
SCHWEIZER V J, EBI K L, VAN VUUREN D P, et al, 2020. Integrated climate-change assessment scenarios and carbon dioxide removal[J]. One Earth, 3(2): 166-172.
doi: 10.1016/j.oneear.2020.08.001
pmid: 34173531
|
[124] |
SHAKED Y, KUSTKA A B, MOREL F M, 2005. A general kinetic model for iron acquisition by eukaryotic phytoplankton[J]. Limnology and Oceanography, 50(3): 872-882.
doi: 10.4319/lo.2005.50.3.0872
|
[125] |
SHI RONGJUN, LI GANG, ZHOU LINBIN, et al, 2015. Increasing aluminum alters the growth, cellular chlorophyll a and oxidation stress of cyanobacteria Synechococcus sp.[J]. Oceanological and Hydrobiological Studies, 44(3): 343-351.
doi: 10.1515/ohs-2015-0033
|
[126] |
SIEGEL D, DEVRIES T, DONEY S, et al, 2021. Assessing the sequestration time scales of some ocean-based carbon dioxide reduction strategies[J]. Environmental Research Letters, 16(10): 104003.
doi: 10.1088/1748-9326/ac0be0
|
[127] |
SOLEIMANI M, RUTTEN L, MADDALA S P, et al, 2020. Modifying the thickness, pore size, and composition of diatom frustule in Pinnularia sp. with Al3+ ions[J]. Scientific Reports, 10(1): 19498.
doi: 10.1038/s41598-020-76318-5
|
[128] |
SONG XIUXIAN, ZHANG YUE, YU ZHIMING, 2021. An eco-environmental assessment of harmful algal bloom mitigation using modified clay[J]. Harmful Algae, 107: 102067.
doi: 10.1016/j.hal.2021.102067
|
[129] |
STOFFYN M, 1979. Biological control of dissolved aluminum in seawater: experimental evidence[J]. Science, 203(4381): 651-653.
pmid: 17813377
|
[130] |
STOLL H, 2020. 30 years of the iron hypothesis of ice ages[J]. Nature, 578(795): 370-371.
doi: 10.1038/d41586-020-00393-x
|
[131] |
TAYLOR S R, 1964. Abundance of chemical elements in the continental crust: a new table[J]. Geochimica et Cosmochimica Acta, 28(8): 1273-1285.
doi: 10.1016/0016-7037(64)90129-2
|
[132] |
THE ASPEN INSTITUTE ENERGY AND ENVIRONMENTAL PROGRAM, 2021. Guidance for ocean-based carbon dioxide removal projects[R/OL]. (2021-12-08) [2022-07-07]. https://www.aspeninstitute.org/wp-content/uploads/files/content/docs/pubs/120721_Ocean-Based-CO2-Removal_E.pdf
|
[133] |
THE NATIONAL ACADEMIES OF SCIENCES ENGINEERING AND MEDICINE, 2021. A Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration[M/OL]. [2022-07-07]. https://doi.org/10.17226/26278
|
[134] |
VAN CAPPELLEN P, DIXIT S, VAN BEUSEKOM J, 2002. Biogenic silica dissolution in the oceans: Reconciling experimental and field-based dissolution rates[J]. Global Biogeochemical Cycles, 16(4): 1075.
|
[135] |
VAN HULTEN M M P, STERL A, TAGLIABUE A, et al, 2013. Aluminium in an ocean general circulation model compared with the West Atlantic Geotraces cruises[J]. Journal of Marine Systems, 126: 3-23.
doi: 10.1016/j.jmarsys.2012.05.005
|
[136] |
VRIELING E G, POORT L, BEELEN T P M, et al, 1999. Growth and silica content of the diatoms Thalassiosira weissflogii and Navicula salinarum at different salinities and enrichments with aluminium[J]. European Journal of Phycology, 34(3): 307-316.
doi: 10.1080/09670269910001736362
|
[137] |
WAGAI R, KAJIURA M, ASANO M, 2020. Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis[J]. SOIL, 6(2): 597-627.
doi: 10.5194/soil-6-597-2020
|
[138] |
WEIS J, SCHALLENBERG C, CHASE Z, et al, 2022. Southern Ocean phytoplankton stimulated by wildfire emissions and sustained by iron recycling[J]. Geophysical Research Letters, 49(11): e2021GL097538.
|
[139] |
WORLD HEALTH ORGANIZATION, 2003. Aluminium in drinking-water: background document for development of WHO Guidelines for drinking-water quality. Geneva, Switzerland, World Health Organization.
|
[140] |
XIE JUN, BAI XIAOCUI, LAVOIE M, et al, 2015. Analysis of the proteome of the marine diatom Phaeodactylum tricornutum exposed to aluminum providing insights into aluminum toxicity mechanisms[J]. Environmental Science & Technology, 49(18): 11182-11190.
doi: 10.1021/acs.est.5b03272
|
[141] |
YOON J E, YOO K C, MACDONALD A M, et al, 2018. Reviews and syntheses: Ocean iron fertilization experiments - past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project[J]. Biogeosciences, 15(19): 5847-5889.
doi: 10.5194/bg-15-5847-2018
|
[142] |
YU ZHIMING, SONG XIUXIAN, CAO XIHUA, et al, 2017. Mitigation of harmful algal blooms using modified clays: Theory, mechanisms, and applications[J]. Harmful Algae, 69: 48-64.
doi: S1568-9883(17)30139-7
pmid: 29122242
|
[143] |
ZHANG X-B, LIU PENG, YANG Y, et al, 2007. Effect of Al in soil on photosynthesis and related morphological and physiological characteristics of two soybean genotypes[J]. Botanical Studies, 48(4): 435-444.
|
[144] |
ZHOU LINBIN, LIU FENGJIE, LIU QINGXIA, et al, 2021. Aluminum increases net carbon fixation by marine diatoms and decreases their decomposition: Evidence for the iron-aluminum hypothesis[J]. Limnology and Oceanography, 66(7): 2712-2727.
doi: 10.1002/lno.v66.7
|
[145] |
ZHOU LINBIN, LIU JIAXING, XING SHUAI, et al, 2018a. Phytoplankton responses to aluminum enrichment in the South China Sea[J]. Journal of Inorganic Biochemistry, 181: 117-131.
doi: 10.1016/j.jinorgbio.2017.09.022
|
[146] |
ZHOU LINBIN, TAN YEHUI, HUANG LIANGMING, et al, 2016. Enhanced utilization of organic phosphorus in a marine diatom Thalassiosira weissflogii: A possible mechanism for aluminum effect under P limitation[J]. Journal of Experimental Marine Biology and Ecology, 478: 77-85.
doi: 10.1016/j.jembe.2016.02.009
|
[147] |
ZHOU LINBIN, TAN YEHUI, HUANG LIANGMIN, et al, 2018b. Aluminum effects on marine phytoplankton: implications for a revised Iron Hypothesis (Iron-Aluminum Hypothesis)[J]. Biogeochemistry, 139(2): 123-137.
doi: 10.1007/s10533-018-0458-6
|