[1] |
艾雪, 2015. 沙漠结皮中耐盐碱细菌的分离及其固沙特性研究[D]. 兰州: 兰州交通大学.
|
|
AI XUE, 2015. Isolation of Saline-alkali-tolerant bacterial strains from desert crust and its characteristics in sand fixation[D]. Lanzhou: Lanzhou Jiaotong University (in Chinese with English abstract).
|
[2] |
艾雪, 王艺霖, 张威, 等, 2015. 柴达木沙漠结皮中耐盐碱细菌的分离及其固沙作用研究[J]. 干旱区资源与环境, 29(10): 145-151.
|
|
AI XUE, WANG YILIN, ZHANG WEI, et al, 2015. Screening of halotolerant and alkalitolerant bacteria from the desert crust in the Qaidam and their effects of sand aggregation[J]. Journal of Arid Land Resources and Environment, 29(10): 145-151 (in Chinese with English abstract).
|
[3] |
董群, 郑丽伊, 方积年, 1996. 改良的苯酚-硫酸法测定多糖和寡糖含量的研究[J]. 中国药学杂志, (9): 38-41.
|
|
DONG QUN, ZHENG LIYI, FANG JINIAN, 2015. Modified phenol-sulfuric acid method for determination of the content of oligo- and polysaccharides[J]. Chinese Pharmaceutical Journal, (9): 38-41 (in Chinese with English abstract).
|
[4] |
毛龙江, 张永战, 魏灵, 等, 2006. 海南岛三亚湾海滩研究[J]. 第四纪研究, 26(3): 477-484.
|
|
MAO LONGJIANG, ZHANG YONGZHAN, WEI LING, et al, 2006. Study on beach characteristics in Sanya area of Hainan Island[J]. Quaternary Sciences, 26(3): 477-484 (in Chinese with English abstract).
|
[5] |
南沙海域环境质量研究专题组, 1996. 南沙群岛及其邻近海域环境质量研究[M]. 北京: 海洋出版社: 1-111.
|
|
Nansha sea area environmental quality research theme group, 1996. The research on environment quality in the Nansha Islands and adjacent sea area[M]. Beijing: China Ocean Press: 1-111 (in Chinese).
|
[6] |
钱琨, 王新志, 陈剑文, 等, 2017. 南海岛礁吹填钙质砂渗透特性试验研究[J]. 岩土力学, 38(6): 1557-1564.
|
|
QIAN KUN, WANG XINZHI, CHEN JIANWEN, et al, 2017. Experimental study on permeability of calcareous sand for islands in the South China Sea[J]. Rock and Soil Mechanics, 38(6): 1557-1564 (in Chinese with English abstract).
|
[7] |
任玉宾, 2016. 南海钙质砂渗透特性试验研究[D]. 大连: 大连理工大学.
|
|
REN YUBIN, 2016. Experimental study on the permeability characteristics of calcareous sand in South China Sea[D]. Dalian: Dalian University of Technology (in Chinese with English abstract).
|
[8] |
王琳, 2020. 南海典型岛礁生物土壤结皮的微生物组及培育技术研究[D]. 广州: 中国科学院南海海洋研究所.
|
|
WANG LIN, 2020. Study on microbiome and cultivation techniques of biological soil crusts on the typical reef islands of the South China Sea[D]. Guangzhou: South China Sea Institute of Oceanology, Chinese Academy of Sciences (in Chinese with English abstract).
|
[9] |
王新志, 2008. 南沙群岛珊瑚礁工程地质特性及大型工程建设可行性研究[D]. 武汉: 中国科学院研究生院 (武汉岩土力学研究所).
|
|
WANG XINZHI, 2008. Study on engineering geological properties of coral reefs and feasibility of large project construction on Nansha islands[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences (in Chinese with English abstract).
|
[10] |
吴楠, 潘伯荣, 张元明, 2004. 土壤微生物在生物结皮形成中的作用及生态学意义[J]. 干旱区研究, (4): 444-450.
|
|
WU NAN, PAN BORONG, ZHANG YUANMING, 2004. Effects and ecological significance of soil-inhabiting microorganisms in the formation of biological soil crusts[J]. Arid Zone Research, (4): 444-450 (in Chinese with English abstract).
|
[11] |
谢作明, 2006. 荒漠藻类对紫外辐射的响应及其结皮形成的研究[D]. 武汉: 中国科学院研究生院(水生生物研究所).
|
|
XIE ZUOMING, 2006. Studies on the responses of desert algae to ultraviolet radiation and the algal crust formation under field conditions[D]. Wuhan: Institute of Hydrobiology, Chinese Academy of Sciences (in Chinese with English abstract).
|
[12] |
余劲聪, 2016. 海藻寡糖在农业领域的应用研究进展[J]. 南方农业学报, 47(6): 921-792.
|
|
YU JINCONG, 2016. Research progress in application of seaweed oligosaccharides in agriculture[J]. Journal of Southern Agriculture, 47(6): 921-927 (in Chinese with English abstract).
|
[13] |
张偲, 王琳, 李洁, 2018. 一株产胞外多糖可固沙的溶杆菌SCSIO 17111及其应用[P]. 广东: CN108795807A, 2018-11-13 (in Chinese).
|
[14] |
张偲, 王琳, 李洁, 2021. 一种适用于南海珊瑚岛礁钙质砂土壤的藻菌结皮培育方法[P]. 广东: CN113287382A, 2021-08-24 (in Chinese).
|
[15] |
张文平, 李昆太, 黄林, 等, 2017. 产胞外多糖菌株的筛选及其对土壤团聚体的影响[J]. 江西农业大学学报, 39(4): 772-729.
|
|
ZHANG WENPING, LI KUNTAI, HUANG LIN, et al, 2017. Screening of exopolysaccharide-producing bacteria and their effects on aggregation in soil[J]. Acta Agriculturae Universitatis Jiangxiensis, 39(4): 772-729 (in Chinese with English abstract).
|
[16] |
郑楠, 邵阳, 罗敏, 等, 2022. 土壤团聚体制备方法对其稳定性及固碳潜力评价的影响研究[J]. 中国环境科学, 42(6): 2821-2827.
|
|
ZHENG NAN, SHAO YANG, LUO MIN, et al, 2022. Effects of soil aggregate preparation methods on the stability and carbon sequestration potential evaluation[J]. China Environmental Science, 42(6): 2821-2827 (in Chinese with English abstract).
|
[17] |
BARGER N N, HERRICK J E, VAN ZEE J, et al, 2006. Impacts of biological soil crust disturbance and composition on C and N loss from water erosion[J]. Biogeochemistry, 77(2): 247-263.
doi: 10.1007/s10533-005-1424-7
|
[18] |
BLAY E S, SCHWABEDISSEN S G, MAGNUSON T S, et al, 2017. Variation in Biological Soil Crust bacterial abundance and diversity as a function of climate in cold steppe ecosystems in the Intermountain West, USA[J]. Microbial Ecology, 74(3): 691-700.
doi: 10.1007/s00248-017-0981-3
pmid: 28409197
|
[19] |
CHEN LANZHOU, ROSSI F, DENG SONGQIANG, et al, 2014. Macromolecular and chemical features of the excreted extracellular polysaccharides in induced biological soil crusts of different ages[J]. Soil Biology & Biochemistry, 78: 1-9.
doi: 10.1016/j.soilbio.2014.07.004
|
[20] |
DA ROCHA U N, CADILLO-QUIROZ H, KARAOZ U, et al, 2015. Isolation of a significant fraction of non-phototroph diversity from a desert biological soil crust[J]. Frontiers in Microbiology, 6: 277.
doi: 10.3389/fmicb.2015.00277
pmid: 25926821
|
[21] |
DUBOIS M, GILLES K A, HAMILTON J K, et al, 1956. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 28(3): 350-356.
doi: 10.1021/ac60111a017
|
[22] |
FLEMMING H C, WINGENDER J, 2010. The biofilm matrix[J]. Nature Reviews Microbiology, 8(9): 623-633.
doi: 10.1038/nrmicro2415
|
[23] |
GODINHO A L, BHOSLE S, 2009. Sand aggregation by exopolysaccharide-producing microbacterium arborescens-AGSB[J]. Current Microbiology, 58(6): 616-621.
doi: 10.1007/s00284-009-9400-4
|
[24] |
KIM M, CHHETRI G, SO Y, et al, 2022. Characteristics and biological activity of exopolysaccharide produced by Lysobacter sp. MMG2 isolated from the roots of Tagetes patula[J]. Microorganisms, 10(7): 1257.
doi: 10.3390/microorganisms10071257
|
[25] |
KIM M, OH H -S, PARK S -C, et al, 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 2): 346-351.
doi: 10.1099/ijs.0.059774-0
pmid: 24505072
|
[26] |
KUMAR S, STECHER G, LI M, et al, 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 35(6): 1547-1549.
doi: 10.1093/molbev/msy096
pmid: 29722887
|
[27] |
KUSKE C R, YEAGER C M, JOHNSON S, et al, 2012. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands[J]. Isme Journal, 6(4): 886-897.
doi: 10.1038/ismej.2011.153
pmid: 22113374
|
[28] |
LETUNIC I, BORK P, 2019. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments[J]. Nucleic Acids Research, 47(W1): W256-W259.
doi: 10.1093/nar/gkz239
|
[29] |
MENG DAIZONG, WU JUN, CHEN KELI, et al, 2019. Effects of extracellular polymeric substances and microbial community on the anti-scouribility of sewer sediment[J]. Science of the Total Environment, 687: 494-504.
doi: 10.1016/j.scitotenv.2019.05.387
|
[30] |
RIMADA P S, ABRAHAM A G, 2003. Comparative study of different methodologies to determine the exopolysaccharide produced by kefir grains in milk and whey[J]. Lait, 83(1): 79-87.
doi: 10.1051/lait:2002051
|
[31] |
SAITOU N, NEI M, 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 4(4): 406-425.
doi: 10.1093/oxfordjournals.molbev.a040454
pmid: 3447015
|
[32] |
SANDHYA V, ALI S Z, 2015. The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation[J]. Microbiology, 84(4): 512-519.
doi: 10.1134/S0026261715040153
|
[33] |
SCHULZ K, MIKHAILYUK T, DRESSLER M, et al, 2016. Biological soil crusts from coastal dunes at the baltic sea: cyanobacterial and algal biodiversity and related soil properties[J]. Microbial Ecology, 71(1): 178-193.
doi: 10.1007/s00248-015-0691-7
pmid: 26507846
|
[34] |
YANG KAI, ZHAO YUNGE, GAO LIQIAN, 2022. Biocrust succession improves soil aggregate stability of subsurface after “Grain for Green” Project in the Hilly Loess Plateau, China[J]. Soil and Tillage Research, 217: 105290.
doi: 10.1016/j.still.2021.105290
|
[35] |
ZHANG BINGCHANG, KONG WEIDONG, WU NAN, et al, 2016. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China[J]. Journal of Basic Microbiology, 56(6): 670-679.
doi: 10.1002/jobm.201500751
pmid: 26947139
|