| [1] | 付昱华, 2000. 变换形成的分形与海洋环境数据分析预测[J]. 海洋通报, 19(1): 79-88. | 
																													
																						|  | FU YUHUA, 2000. Transform-formed fractals and analyses and forecast of marine environment data[J]. Marine Science Bulletin, 19(1): 79-88 (in Chinese with English abstract). | 
																													
																						| [2] | 黄真理, 2000. 湍流的分形特征[J]. 力学进展, 30(4): 581-596. | 
																													
																						|  | HUANG ZHENLI, 2000. Fractal nature in turbulence[J]. Advances in Mechanics, 30(4): 581-596 (in Chinese with English abstract). | 
																													
																						| [3] | 雷玺, 2015. 多重分形在海洋波高数据分析中的应用[D]. 青岛: 中国海洋大学. | 
																													
																						|  | LEI XI, 2015. Application of multifractal analysis in marine wave height data analysis[D]. Qingdao: Ocean University of China (in Chinese with English abstract). | 
																													
																						| [4] | 刘式达, 付遵涛, 刘式适, 2014. 间歇湍流的分形特征——分数维及分数阶导数的应用[J]. 地球物理学报, 57(9): 2751-2755.  doi: 10.6038/cjg20140902
 | 
																													
																						|  | LIU SHIDA, FU ZUNTAO, LIU SHIKUO, 2014. Fractal behaviors of intermittent turbulence - applications of fractional dimension and fractional derivatives[J]. Chinese Journal of Geophysics, 57(9): 2751-2755 (in Chinese with English abstract). | 
																													
																						| [5] | 沈学会, 陈举华, 2005. 分形与混沌理论在湍流研究中的应用[J]. 河南科技大学学报(自然科学版), 26(1): 27-30. | 
																													
																						|  | SHEN XUEHUI, CHEN JUHUA, 2005. Application of fractal and chaos theory in turbulence study[J]. Journal of Henan University of Science and Technology (Natural Science), 26(1): 27-30 (in Chinese with English abstract). | 
																													
																						| [6] | 田纪伟, 曹露洁, 楼顺里, 1996. 二维表面波破碎面分形结构[J]. 海洋学报, 18(3): 1-4 (in Chinese). | 
																													
																						| [7] | 邢元明, 杨磊, 管玉平, 2013. 海表扩散层中气体行为的分子动力学模拟[J]. 热带海洋学报, 32(2): 82-87.  doi: 10.11978/j.issn.1009-5470.2013.02.009
 | 
																													
																						|  | XING YUANMING, YANG LEI, GUAN YUPING, 2013. Molecular dynamics simulation of gas behaviors in seawater diffusive layer beneath the air-sea interface[J]. Journal of Tropical Oceanography, 32(2): 82-87 (in Chinese with English abstract). | 
																													
																						| [8] | ABERNATHEY R P, MARSHALL J, 2013. Global surface eddy diffusivities derived from satellite altimetry[J]. Journal of Geophysical Research, 118(2): 901-916. | 
																													
																						| [9] | BITHELL M, GRAY L J, 1997. Contour lengthening rates near the tropopause[J]. Geophysical Research Letters, 24(22): 2721-2724.  doi: 10.1029/97GL02954
 | 
																													
																						| [10] | FERRARI R, NIKURASHIN M, 2010. Suppression of eddy diffusivity across jets in the Southern Ocean[J]. Journal of Physical Oceanography, 40(7): 1501-1519.  doi: 10.1175/2010JPO4278.1
 | 
																													
																						| [11] | FOX-KEMPER B, BACHMAN S, PEARSON B, et al, 2014. Principles and advances in subgrid modeling for eddy-rich simulations[J]. Exchanges, 19(2): 42-45. | 
																													
																						| [12] | FOX-KEMPER B, MENEMENLIS D, 2008. Can large eddy simulation techniques improve mesoscale rich ocean models?[M]//HECHT M W, HASUMI H, Ocean Modeling in an Eddying Regime. Washington: American Geophysical Union: 319-337. | 
																													
																						| [13] | HAYNES P, SHUCKBURGH E, 2000. Effective diffusivity as a diagnostic of atmospheric Transport: 1. stratosphere[J]. Journal of Geophysical Research, 105(18): 22777-22794.  doi: 10.1029/2000JD900093
 | 
																													
																						| [14] | HAZA A C, ÖZGÖKMEN T M, GRIFFA A, et al, 2012. Parameterization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgridscale models[J]. Ocean Modelling, 42: 31-49.  doi: 10.1016/j.ocemod.2011.11.005
 | 
																													
																						| [15] | HUANG RUIXIN, 2014. Energetics of lateral eddy diffusion/advection: part Ⅱ. numerical diffusion/diffusivity and gravitational potential energy change due to isopycnal diffusion[J]. Acta Oceanological Sinica, 33(3): 19-39. | 
																													
																						| [16] | IYER K P, SCHUMACHER J, SREENIVASAN K R, et al, 2020. Fractal iso-level sets in high-Reynolds-number scalar turbulence[J]. Physical Review Fluids, 5: 044501.  doi: 10.1103/PhysRevFluids.5.044501
 | 
																													
																						| [17] | KAMENKOVICH I, BERLOFF P, HAIGH M, et al, 2021. Complexity of mesoscale eddy diffusivity in the ocean[J]. Geophysical Research Letters, 48(5): e2020GL091719. | 
																													
																						| [18] | LAGERLOEF G S E, MITCHUM G T, LUKAS R B, et al, 1999. Tropical pacific near-surface currents estimated from altimeter, wind, and drifter data[J]. Journal of Geophysical Research, 104(10): 23313-23326.  doi: 10.1029/1999JC900197
 | 
																													
																						| [19] | LI XIN, HU FEI, LIU GANG, et al, 2001. Multi-scale fractal characteristics of atmospheric boundary-layer turbulence[J]. Advances in Atmospheric Sciences, 18(5): 787-792.  doi: 10.1007/BF03403502
 | 
																													
																						| [20] | LORENSEN W E, CLINE H E, 1987. Marching cubes: a high resolution 3D surface construction algorithm[J]. ACM SIGGRAPH Computer Graphics, 21(4): 163-169.  doi: 10.1145/37402.37422
 | 
																													
																						| [21] | LU JIANHUA, WANG FUCHANG, LIU HAILONG, et al, 2016. Stationary mesoscale eddies, upgradient eddy fluxes, and the anisotropy of eddy diffusivity[J]. Geophysical Research Letters, 43(2): 743-751.  doi: 10.1002/grl.v43.2
 | 
																													
																						| [22] | MANDELBROT B, 1967. How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science, 156(3775): 636-638.  pmid: 17837158
 | 
																													
																						| [23] | MANDELBROT B B, 1975. On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars[J]. Journal of Fluid Mechanics, 72(3): 401-416.  doi: 10.1017/S0022112075003047
 | 
																													
																						| [24] | MARSHALL J, ADCROFT A J, HILL C, et al, 1997. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers[J]. Journal of Geophysical Research, 102(3): 5753-5766.  doi: 10.1029/96JC02775
 | 
																													
																						| [25] | MARSHALL J, SCOTT J R, ROMANOU A, et al, 2017. The dependence of the ocean's MOC on mesoscale eddy diffusivities: a model study[J]. Ocean Modelling, 111: 1-8.  doi: 10.1016/j.ocemod.2017.01.001
 | 
																													
																						| [26] | MARSHALL J, SHUCKBURGH E, JONES H, et al, 2006. Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport[J]. Journal of Physical Oceanography, 36(9): 1806-1821.  doi: 10.1175/JPO2949.1
 | 
																													
																						| [27] | MONTI P, LEUZZI G, 2010. Lagrangian models of dispersion in marine environment[J]. Environmental Fluid Mechanics, 10: 637-656.  doi: 10.1007/s10652-010-9184-x
 | 
																													
																						| [28] | NAKAMURA N, 1996. Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate[J]. Journal of the Atmospheric Sciences, 53(11): 1524-1537.  doi: 10.1175/1520-0469(1996)053<1524:TDMEFA>2.0.CO;2
 | 
																													
																						| [29] | NAKAMURA N, 2001. A new look at eddy diffusivity as a mixing diagnostic[J]. Journal of the Atmospheric Sciences, 58(24): 3685-3701.  doi: 10.1175/1520-0469(2001)058<3685:ANLAED>2.0.CO;2
 | 
																													
																						| [30] | OSBORNE A R, KIRWAN J R A D, PROVENZALE A, et al, 1989. Fractal drifter trajectories in the Kuroshio extension[J]. Tellus, 41A(5): 416-435. | 
																													
																						| [31] | PALADIN G, VULPIANI A, 1986. Fractal models for two- and three-dimensional turbulence[M]// PIETRONERO L, TOSATTI E, Fractals in Physics. North Holland: Elsevier: 447-452. | 
																													
																						| [32] | ROBERTS M J, MARSHALL D P, 2000. On the validity of downgradient eddy closures in ocean models[J]. Journal of Geophysical Research, 105(12): 28613-28627.  doi: 10.1029/1999JC000041
 | 
																													
																						| [33] | QIAN YU-KUN, PENG SHIQIU, WEN XICI, et al, 2022. Quantifying local, instantaneous, irreversible mixing using Lagrangian particles and tracer contours[J]. Journal of Physical Oceanography, 52(4): 741-757. | 
																													
																						| [34] | SALLÉE J B, SPEER K, MORROW R, et al, 2008. An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean[J]. Journal of Marine Research, 66(4): 441-463.  doi: 10.1357/002224008787157458
 | 
																													
																						| [35] | SANDERSON B G, BOOTH D A, 1991. The fractal dimension of drifter trajectories and estimates of horizontal eddy-diffusivity[J]. Tellus, 43(5): 334-349. | 
																													
																						| [36] | SHUCKBURGH E, JONES H, MARSHALL J, et al, 2009. Robustness of an effective diffusivity diagnostic in oceanic flows[J]. Journal of Physical Oceanography, 39(9): 1993-2009.  doi: 10.1175/2009JPO4122.1
 | 
																													
																						| [37] | SREENIVASAN K R, MENEVEAU C, 2006. The fractal facets of turbulence[J]. Journal of Fluid Mechanics, 173: 357-386.  doi: 10.1017/S0022112086001209
 | 
																													
																						| [38] | THOMPSON A F, SALLÉE J-B, 2012. Jets and topography: jet transitions and the impact on transport in the Antarctic Circumpolar Current[J]. Journal of Physical Oceanography, 42(6): 956-972.  doi: 10.1175/JPO-D-11-0135.1
 |