[1] |
黄晖, 陈竹, 黄林韬, 2021. 中国珊瑚礁状况报告(2010-2019)[M]. 北京: 海洋出版社.
|
|
HUANG HUI, CHEN ZHU, HUANG LINTAO, 2021. Status of coral reefs in China (2010-2019)[M]. Beijing: China Ocean Press (in Chinese).
|
[2] |
施祺, 赵美霞, 黄玲英, 等, 2010. 三亚鹿回头岸礁区人类活动及其对珊瑚礁的影响[J]. 热带地理, 30(5): 486-490, 509.
|
|
SHI QI, ZHAO MEIXIA, HUANG LINGYING, et al, 2010. Human activities and impacts on coral reef at the Luhuitou fringing reef, Sanya[J]. Tropical Geography, 30(5): 486-490, 509 (in Chinese with English abstract).
|
[3] |
王耕, 常畅, 于小茜, 等, 2019. 基于文献计量分析的珊瑚礁研究现状与热点[J]. 生态学报, 39(3): 1114-1123.
|
|
WANG GENG, CHANG CHANG, YU XIAOXI, et al, 2019. Status quo and hotspots of coral reef research based on bibliometric analysis[J]. Acta Ecologica Sinica, 39(3): 1114-1123 (in Chinese with English abstract).
|
[4] |
ANTHONY K R N, MARSHALL P A, ABDULLA A, et al, 2015. Operationalizing resilience for adaptive coral reef management under global environmental change[J]. Global Change Biology, 21(1): 48-61.
doi: 10.1111/gcb.12700
pmid: 25196132
|
[5] |
ARRIGONI R, BERUMEN M L, STOLARSKI J, et al, 2019. Uncovering hidden coral diversity: A new cryptic lobophylliid scleractinian from the Indian Ocean[J]. Cladistics, 35(3): 301-328.
doi: 10.1111/cla.12346
pmid: 34633682
|
[6] |
AUDZIJONYTE A, RICHARDS S A, STUART-SMITH R D, et al, 2020. Fish body sizes change with temperature but not all species shrink with warming[J]. Nature Ecology & Evolution, 4(6): 809-814.
|
[7] |
BELLWOOD D R, GOATLEY C H R, BELLWOOD O, 2017. The evolution of fishes and corals on reefs: form, function and interdependence[J]. Biological Reviews, 92(2): 878-901.
|
[8] |
BOSTRÖM-EINARSSON L, BABCOCK R C, BAYRAKTAROV E, et al, 2020. Coral restoration - a systematic review of current methods, successes, failures and future directions[J]. PLoS One, 15(1): e0226631.
|
[9] |
BOTANA M T, CHAVES-FILHO A B, INAGUE A, et al, 2022. Thermal plasticity of coral reef symbionts is linked to major alterations in their lipidome composition[J]. Limnology and Oceanography, 67(7): 1456-1469.
|
[10] |
BOWEN B W, ROCHA L A, TOONEN R J, et al, 2013. The origins of tropical marine biodiversity[J]. Trends in Ecology & Evolution, 28(6): 359-366.
|
[11] |
BRANDL S J, RASHER D B, CÔTÉ I M, et al, 2019. Coral reef ecosystem functioning: eight core processes and the role of biodiversity[J]. Frontiers in Ecology and the Environment, 17(8): 445-454.
|
[12] |
CACCIAPAGLIA C, VAN WOESIK R, 2018. Marine species distribution modelling and the effects of genetic isolation under climate change[J]. Journal of Biogeography, 45(1): 154-163.
|
[13] |
CAI LIN, ZHOU GUOWEI, TIAN RENMAO, et al, 2017. Metagenomic analysis reveals a green sulfur bacterium as a potential coral symbiont[J]. Scientific Reports, 7(1): 9320.
doi: 10.1038/s41598-017-09032-4
pmid: 28839161
|
[14] |
CANTALICE K M, ALVARADO-ORTEGA J, BELLWOOD D R, et al, 2022. Rising from the ashes: The biogeographic origins of modern coral reef fishes[J]. BioScience, 72(8): 769-777.
doi: 10.1093/biosci/biac045
pmid: 35923187
|
[15] |
CHEN BIAO, YU KEFU, LIAO ZHIHENG, et al, 2021. Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea[J]. Science of the Total Environment, 765: 142690.
|
[16] |
CLEMENTS C S, HAY M E, 2019. Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae[J]. Nature Ecology & Evolution, 3(2): 178-182.
|
[17] |
CLEMENTS C S, HAY M E, 2021. Biodiversity has a positive but saturating effect on imperiled coral reefs[J]. Science Advances, 7(42): eabi8592.
|
[18] |
CONTI-JERPE I E, THOMPSON P D, WONG C W M, et al, 2020. Trophic strategy and bleaching resistance in reef-building corals[J]. Science Advances, 6(15): eaaz5443.
|
[19] |
COX K D, WOODS M B, REIMCHEN T E, 2021. Regional heterogeneity in coral species richness and hue reveals novel global predictors of reef fish intra-family diversity[J]. Scientific Reports, 11(1): 18275.
doi: 10.1038/s41598-021-97862-8
pmid: 34521952
|
[20] |
CUI GUOXIN, LIEW Y J, LI YONG, et al, 2019. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia[J]. PLoS Genetics, 15(6): e1008189.
|
[21] |
CYBULSKI J D, HUSA S M, DUPREY N N, et al, 2020. Coral reef diversity losses in China’s Greater Bay Area were driven by regional stressors[J]. Science Advances, 6(40): eabb1046.
|
[22] |
DIETZEL A, BODE M, CONNOLLY S R, et al, 2021. The population sizes and global extinction risk of reef-building coral species at biogeographic scales[J]. Nature Ecology & Evolution, 5(5): 663-669.
|
[23] |
EDDY T D, LAM V W Y, REYGONDEAU G, et al, 2021. Global decline in capacity of coral reefs to provide ecosystem services[J]. One Earth, 4(9): 1278-1285.
|
[24] |
FISHER R, O’LEARY R A, LOW-CHOY S, et al, 2015. Species richness on coral reefs and the pursuit of convergent global estimates[J]. Current Biology, 25(4): 500-505.
doi: 10.1016/j.cub.2014.12.022
pmid: 25639239
|
[25] |
FLOETER S R, BENDER M G, SIQUEIRA A C, et al, 2018. Phylogenetic perspectives on reef fish functional traits[J]. Biological Reviews, 93(1): 131-151.
|
[26] |
FOX M D, NELSON C E, OLIVER T A, et al, 2021. Differential resistance and acclimation of two coral species to chronic nutrient enrichment reflect life‐history traits[J]. Functional Ecology, 35(5): 1081-1093.
|
[27] |
FRANKOWIAK K, WANG X T, SIGMAN D M, et al, 2016. Photosymbiosis and the expansion of shallow-water corals[J]. Science Advances, 2(11): e1601122.
|
[28] |
GOUEZO M, GOLBUU Y, FABRICIUS K, et al, 2019. Drivers of recovery and reassembly of coral reef communities[J]. Proceedings of the Royal Society B: Biological Sciences, 286(1897): 20182908.
|
[29] |
GRAHAM N A J, NASH K L, 2013. The importance of structural complexity in coral reef ecosystems[J]. Coral Reefs, 32(2): 315-326.
|
[30] |
GRAHAM N A J, JENNINGS S, MACNEIL M A, et al, 2015. Predicting climate-driven regime shifts versus rebound potential in coral reefs[J]. Nature, 518(7537): 94-97.
|
[31] |
HARRIS D L, ROVERE A, CASELLA E, et al, 2018. Coral reef structural complexity provides important coastal protection from waves under rising sea levels[J]. Science Advances, 4(2): eaao4350.
|
[32] |
HEMINGSON C R, MIHALITSIS M, BELLWOOD D R, 2022. Are fish communities on coral reefs becoming less colourful?[J]. Global Change Biology, 28(10): 3321-3332.
|
[33] |
HILL T S, HOOGENBOOM M O, 2022. The indirect effects of ocean acidification on corals and coral communities[J]. Coral Reefs, 41(6): 1557-1583.
|
[34] |
HOEKSEMA B W, 2017. The hidden biodiversity of tropical coral reefs[J]. Biodiversity, 18(1): 8-12.
|
[35] |
HU MINJIE, ZHENG XIAOBIN, FAN CHENMING, et al, 2020. Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia[J]. Nature, 582(7813): 534-538.
|
[36] |
HUANG DANWEI, GOLDBERG E E, CHOU L M, et al, 2018. The origin and evolution of coral species richness in a marine biodiversity hotspot[J]. Evolution, 72(2): 288-302.
doi: 10.1111/evo.13402
pmid: 29178128
|
[37] |
HUGHES T P, HUANG H, YOUNG M A L, 2013. The wicked problem of China's disappearing coral reefs[J]. Conservation Biology, 27(2): 261-269.
doi: 10.1111/j.1523-1739.2012.01957.x
pmid: 23140101
|
[38] |
HUGHES T P, ANDERSON K D, CONNOLLY S R, et al, 2018a. Spatial and temporal patterns of mass bleaching of corals in the anthropocene[J]. Science, 359(6371): 80-83.
|
[39] |
HUGHES T P, KERRY J T, BAIRD A H, et al, 2018b. Global warming transforms coral reef assemblages[J]. Nature, 556(7702): 492-496.
|
[40] |
HUGHES T P, KERRY J T, BAIRD A H, et al, 2019. Global warming impairs stock-recruitment dynamics of corals[J]. Nature, 568(7752): 387-390.
|
[41] |
JIANG LEI, SUN YOUFANG, ZHOU GUOWEI, et al, 2022. Ocean acidification elicits differential bleaching and gene expression patterns in larval reef coral Pocillopora damicornis under heat stress[J]. Science of the Total Environment, 842: 156851.
|
[42] |
JIANG LEI, LIU CHENGYUE, CUI GUOXIN, et al, 2023. Rapid shifts in thermal reaction norms and tolerance of brooded coral larvae following parental heat acclimation[J]. Molecular Ecology, 32(5): 1098-1116.
|
[43] |
JONES L A, MANNION P D, FARNSWORTH A, et al, 2019. Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change[J]. Royal Society Open Science, 6(4): 182111.
|
[44] |
KENKEL C D, MATZ M V, 2016. Gene expression plasticity as a mechanism of coral adaptation to a variable environment[J]. Nature Ecology & Evolution, 1(1): 14.
|
[45] |
KENKEL C D, MOCELLIN V J L, BAY L K, 2020. Global gene expression patterns in Porites white patch syndrome: disentangling symbiont loss from the thermal stress response in reef-building coral[J]. Molecular Ecology, 29(20): 3907-3920.
|
[46] |
KNOWLTON N, JACKSON J B C, 2008. Shifting baselines, local impacts, and global change on coral reefs[J]. PLoS Biology, 6(2): e54.
|
[47] |
KUMAGAI N H, GARCÍA MOLINOS J, YAMANO H, et al, 2018. Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(36): 8990-8995.
doi: 10.1073/pnas.1716826115
pmid: 30126981
|
[48] |
LAJEUNESSE T C, PARKINSON J E, GABRIELSON P W, et al, 2018. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts[J]. Current Biology, 28(16): 2570-2580. e6.
doi: S0960-9822(18)30907-2
pmid: 30100341
|
[49] |
LESSER M P, SLATTERY M, MOBLEY C D, 2018. Biodiversity and functional ecology of mesophotic coral reefs[J]. Annual Review of Ecology, Evolution, and Systematics, 49: 49-71.
doi: 10.1146/annurev-ecolsys-110617-062423
|
[50] |
LIN SENJIE, CHENG SHIFENG, SONG BO, et al, 2015. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis[J]. Science, 350(6261): 691-694.
|
[51] |
LYU YIHUA, ZHOU ZIHUA, ZHANG YANGMEI, et al, 2022. The mass coral bleaching event of inshore corals form South China Sea witnessed in 2020: insight into the causes, process and consequence[J]. Coral Reefs, 41(5): 1351-1364.
|
[52] |
MASSELINK G, BEETHAM E, KENCH P, 2020. Coral reef islands can accrete vertically in response to sea level rise[J]. Science Advances, 6(24): eaay3656.
|
[53] |
MATTHEWS J L, CROWDER C M, OAKLEY C A, et al, 2017. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 114(50): 13194-13199.
doi: 10.1073/pnas.1710733114
pmid: 29158383
|
[54] |
MCCOOK L J, LIAN JIANSHENG, LEI XINMING, et al, 2019. Marine protected areas in southern China: upgrading conservation effectiveness in the ‘eco-civilization’ era[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(S2): 33-43.
|
[55] |
MCMANUS L C, FORREST D L, TEKWA E W, et al, 2021. Evolution and connectivity influence the persistence and recovery of coral reefs under climate change in the Caribbean, Southwest Pacific, and Coral Triangle[J]. Global Change Biology, 27(18): 4307-4321.
doi: 10.1111/gcb.15725
pmid: 34106494
|
[56] |
MCWILLIAM M, HOOGENBOOM M O, BAIRD A H, et al, 2018. Biogeographical disparity in the functional diversity and redundancy of corals[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(12): 3084-3089.
doi: 10.1073/pnas.1716643115
pmid: 29507193
|
[57] |
MCWILLIAM M, PRATCHETT M S, HOOGENBOOM M O, et al, 2020. Deficits in functional trait diversity following recovery on coral reefs[J]. Proceedings of the Royal Society B: Biological Sciences, 287(1918): 20192628.
|
[58] |
MELLIN C, AARON MACNEIL M, CHEAL A J, et al, 2016. Marine protected areas increase resilience among coral reef communities[J]. Ecology Letters, 19(6): 629-637.
doi: 10.1111/ele.12598
pmid: 27038889
|
[59] |
MOBERG F, FOLKE C, 1999. Ecological goods and services of coral reef ecosystems[J]. Ecological Economics, 29(2): 215-233.
|
[60] |
MOHAMED A R, ANDRADE N, MOYA A, et al, 2020. Dual RNA-sequencing analyses of a coral and its native symbiont during the establishment of symbiosis[J]. Molecular Ecology, 29(20): 3921-3937.
|
[61] |
MORAIS R A, DEPCZYNSKI M, FULTON C, et al, 2020. Severe coral loss shifts energetic dynamics on a coral reef[J]. Functional Ecology, 34(7): 1507-1518.
|
[62] |
MUSCATINE L, PORTER J W, 1977. Reef corals: mutualistic symbioses adapted to nutrient-poor environments[J]. Bioscience, 27(7): 454-460.
|
[63] |
OSMAN E O, SUGGETT D J, VOOLSTRA C R, et al, 2020. Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities[J]. Microbiome, 8(1): 8.
doi: 10.1186/s40168-019-0776-5
pmid: 32008576
|
[64] |
PERNICE M, RAINA J B, RÄDECKER N, et al, 2020. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health[J]. The ISME Journal, 14(2): 325-334.
|
[65] |
PUTNAM H M, BAROTT K L, AINSWORTH T D, et al, 2017. The vulnerability and resilience of reef-building corals[J]. Current Biology, 27(11): R528-R540.
|
[66] |
RABOSKY DL, CHANG J, TITLE P O, et al, 2018. An inverse latitudinal gradient in speciation rate for marine fishes[J]. Nature, 559(7714): 392-395.
|
[67] |
RÄDECKER N, POGOREUTZ C, GEGNER H M, et al, 2021. Heat stress destabilizes symbiotic nutrient cycling in corals[J]. Proceedings of the National Academy of Sciences of the United States of America, 118(5): e2022653118.
|
[68] |
RÄDECKER N, POGOREUTZ C, GEGNER H M, et al, 2022. Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling[J]. The ISME Journal, 16(4): 1110-1118.
|
[69] |
RIVERA H E, AICHELMAN H E, FIFER J E, et al, 2021. A framework for understanding gene expression plasticity and its influence on stress tolerance[J]. Molecular Ecology, 30(6): 1381-1397.
doi: 10.1111/mec.15820
pmid: 33503298
|
[70] |
ROCHA L A, PINHEIRO H T, SHEPHERD B, et al, 2018. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs[J]. Science, 361(6399): 281-284.
doi: 10.1126/science.aaq1614
pmid: 30026226
|
[71] |
ROSENBERG E, KOREN O, RESHEF L, et al, 2007. The role of microorganisms in coral health, disease and evolution[J]. Nature Reviews Microbiology, 5(5): 355-362.
doi: 10.1038/nrmicro1635
pmid: 17384666
|
[72] |
SIQUEIRA A C, KIESSLING W, BELLWOOD D R, 2022. Fast-growing species shape the evolution of reef corals[J]. Nature Communications, 13(1): 2426.
doi: 10.1038/s41467-022-30234-6
pmid: 35504876
|
[73] |
SUN YOUFANG, HUANG LINTAO, MCCOOK LJ, et al, 2022. Joint protection of a crucial reef ecosystem[J]. Science, 377(6611): 1163.
doi: 10.1126/science.abo0166
pmid: 36074842
|
[74] |
TANG JIA, WU ZHONGJIE, WAN LU, et al, 2021. Differential enrichment and physiological impacts of ingested microplastics in scleractinian corals in situ[J]. Journal of Hazardous Materials, 404: 124205.
|
[75] |
VAN OPPEN M J H, OLIVER J K, PUTNAM H M, et al, 2015. Building coral reef resilience through assisted evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 112(8): 2307-2313.
doi: 10.1073/pnas.1422301112
pmid: 25646461
|
[76] |
VERON J, STAFFORD-SMITH M, DEVANTIER L, et al, 2015. Overview of distribution patterns of zooxanthellate scleractinia[J]. Frontiers in Marine Science, 1: 81.
|
[77] |
VOOLSTRA C R, SUGGETT D J, PEIXOTO R S, et al, 2021. Extending the natural adaptive capacity of coral holobionts[J]. Nature Reviews Earth & Environment, 2(11): 747-762.
|
[78] |
WANG WEIQUAN, TANG KAIHAO, WANG PENGXIA, et al, 2022. The coral pathogen Vibrio coralliilyticus kills non-pathogenic holobiont competitors by triggering prophage induction[J]. Nature Ecology & Evolution, 6(8): 1132-1144.
|
[79] |
WANG XIN, ZOCCOLA D, LIEW Y J, et al, 2021. The evolution of calcification in reef-building corals[J]. Molecular Biology and Evolution, 38(9): 3543-3555.
doi: 10.1093/molbev/msab103
pmid: 33871620
|
[80] |
WATERHOUSE L, HEPPELL S A, PATTENGILL-SEMMENS C V, et al, 2020. Recovery of critically endangered Nassau grouper (Epinephelus striatus) in the Cayman Islands following targeted conservation actions[J]. Proceedings of the National Academy of Sciences of the United States of America, 117(3): 1587-1595.
|
[81] |
WONG K H, GOODBODY-GRINGLEY G, DE PUTRON S J, et al, 2021. Brooded coral offspring physiology depends on the combined effects of parental press and pulse thermal history[J]. Global Change Biology, 27(13): 3179-3195.
|
[82] |
XIANG TINGTING, LEHNERT E, JINKERSON R E, et al, 2020. Symbiont population control by host-symbiont metabolic interaction in Symbiodiniaceae-cnidarian associations[J]. Nature Communications, 11(1): 108.
doi: 10.1038/s41467-019-13963-z
pmid: 31913264
|
[83] |
YANG TINGHAN, DIAO XIAOPING, CHENG HUAMIN, et al, 2020. Comparative study of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) in corals, sediments and seawater from coral reefs of Hainan, China[J]. Environmental Pollution, 264: 114719.
|
[84] |
YOSHIOKA Y, YAMASHITA H, SUZUKI G, et al, 2021. Whole-genome transcriptome analyses of native symbionts reveal host coral genomic novelties for establishing coral-algae symbioses[J]. Genome Biology and Evolution, 13(1): evaa240.
|
[85] |
YU XIAOPENG, YU KEFU, CHEN BIAO, et al, 2021a. Different responses of scleractinian coral Acropora pruinosa from Weizhou Island during extreme high temperature events[J]. Coral Reefs, 40(6): 1697-1711.
|
[86] |
YU XIAOPENG, YU KEFU, LIAO ZHIHENG, et al, 2021b. Seasonal fluctuations in symbiotic bacteria and their role in environmental adaptation of the scleractinian coral Acropora pruinosa in high-latitude coral reef area of the South China Sea[J]. Science of the Total Environment, 792: 148438.
|
[87] |
ZHANG RUIJIE, YU KEFU, LI AN, et al, 2020. Antibiotics in coral reef fishes from the South China Sea: occurrence, distribution, bioaccumulation, and dietary exposure risk to human[J]. Science of the Total Environment, 704: 135288.
|
[88] |
ZHANG RUIJIE, HAN MINWEI, YU KEFU, et al, 2021. Distribution, fate and sources of polycyclic aromatic hydrocarbons (PAHs) in atmosphere and surface water of multiple coral reef regions from the South China Sea: a case study in spring-summer[J]. Journal of Hazardous Materials, 412: 125214.
|
[89] |
ZHOU GUOWEI, CAI LIN, YUAN TAO, et al, 2017. Microbiome dynamics in early life stages of the scleractinian coral Acropora gemmifera in response to elevated pCO2[J]. Environmental Microbiology, 19(8): 3342-3352.
|
[90] |
ZHOU ZHI, TANG JIA, CAO XIAOCONG, et al, 2023. High heterotrophic plasticity of massive coral Porites pukoensis contributes to its tolerance to bioaccumulated microplastics[J]. Environmental Science & Technology, 57(8): 3391-3401.
|