[1] |
曹军骥, 占长林, 2011. 黑碳在全球气候和环境系统中的作用及其在相关研究中的意义[J]. 地球科学与环境学报, 33(2): 177-184.
|
|
CAO JUNJI, ZHAN CHANGLIN, 2011. Research significance and role of black carbon in the global climate and environmental systems[J]. Journal of Earth Sciences and Environment, 33(2): 177-184 (in Chinese with English abstract).
|
[2] |
方仔铭, 2018. 南海及极地海域黑碳的源、汇及其对海洋碳循环的影响[D]. 厦门: 厦门大学: 1-109.
|
|
FANG ZIMING, 2018. Source and fate of black carbon in the South China Sea and polar oceans and its influences on ocean carbon cycling[D]. Xiamen: Xiamen University: 1-109 (in Chinese with English abstract).
|
[3] |
|
|
XIA CUIMEI, WANG NAN, LIU JINGYU, et al, 2023. Source-sink processes of marine black carbon in the context of “carbon neutrality”[J/OL]. Bulletin of Geological Science and Technology. https://doi.org/10.19509/j.cnki.dzkq.tb20220455 (in Chinese with English abstract).
|
[4] |
徐翠玲, 孙治雷, 吴能友, 等, 2020. 海底泥火山的甲烷迁移与转化及其对海洋碳输入的影响[J]. 海洋地质与第四纪地质, 40(6): 1-13.
|
|
XU CUILING, SUN ZHILEI, WU NENGYOU, et al, 2020. Methane migration and consumption in submarine mud volcanism and their impacts on marine carbon input[J]. Marine Geology & Quaternary Geology, 40(6): 1-13 (in Chinese with English abstract).
|
[5] |
赵维殳, 肖湘, 2023. 深海热液区微生物群落与环境适应性机理[J]. 中国科学: 生命科学, 53(5): 660-671.
|
|
ZHAO WEISHU, XIAO XIANG, 2023. Microbiome and environmental adaption mechanisms in deep-sea hydrothermal vents[J]. Scientia Sinica: Vitae, 53(5): 660-671 (in Chinese with English abstract).
|
[6] |
ALLEN K D, WEGENER G, SUBLETT D M, et al, 2021. Biogenic formation of amorphous carbon by anaerobic methanotrophs and select methanogens[J]. Science Advances, 7(44): eabg9739.
|
[7] |
BEAUPRÉ S R, WALKER B D, DRUFFEL E R M, 2020. The two-component model coincidence: evaluating the validity of marine dissolved organic radiocarbon as a stable-conservative tracer at Station M[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 173: 104737.
|
[8] |
BIRD M I, WYNN J G, SAIZ G, et al. 2015. The pyrogenic carbon cycle[J]. Annual Review of Earth and Planetary Sciences, 43: 273-298.
|
[9] |
BOETIUS A, WENZHÖFER F, 2013. Seafloor oxygen consumption fueled by methane from cold seeps[J]. Nature Geoscience, 6(9): 725-734.
|
[10] |
BRÜNJES J, SEIDEL M, DITTMAR T, et al, 2022. Natural asphalt seeps are potential sources for recalcitrant oceanic dissolved organic sulfur and dissolved black carbon[J]. Environmental Science & Technology, 56(12): 9092-9102.
|
[11] |
BUSECK P R, ADACHI K, GELENCSÉR A, et al, 2012. Are black carbon and soot the same?[J]. Atmospheric Chemistry and Physics Discussions, 12(9): 24821-24846.
|
[12] |
COPPOLA A I, ZIOLKOWSKI L A, MASIELLO C A, et al, 2014. Aged black carbon in marine sediments and sinking particles[J]. Geophysical Research Letters, 41(7): 2427-2433.
|
[13] |
COPPOLA A I, DRUFFEL E R M, 2016. Cycling of black carbon in the ocean[J]. Geophysical Research Letters, 43(9): 4477-4482.
|
[14] |
COPPOLA A I, WIEDEMEIER D B, GALY V, et al, 2018. Global-scale evidence for the refractory nature of riverine black carbon[J]. Nature Geoscience, 11(8): 584-588.
doi: 10.1038/s41561-018-0159-8
|
[15] |
COPPOLA A I, WAGNER S, LENNARTZ S T, et al, 2022. The black carbon cycle and its role in the Earth system[J]. Nature Reviews Earth & Environment, 3(8): 516-532.
|
[16] |
DAN S F, CUI DONGYANG, YANG BIN, et al, 2022. Sources, burial flux and mass inventory of black carbon in surface sediments of the Daya Bay, a typical mariculture bay of China[J]. Marine Pollution Bulletin, 179: 113708.
|
[17] |
DICK G J, 2019. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally[J]. Nature Reviews Microbiology, 17(5): 271-283.
doi: 10.1038/s41579-019-0160-2
pmid: 30867583
|
[18] |
DICKENS A F, GÉLINAS Y, HEDGES J I, 2004a. Physical separation of combustion and rock sources of graphitic black carbon in sediments[J]. Marine Chemistry, 92(1-4): 215-223.
|
[19] |
DICKENS A F, GÉLINAS Y, MASIELLO C A, et al, 2004b. Reburial of fossil organic carbon in marine sediments[J]. Nature, 427(6972): 336-339.
|
[20] |
DITTMAR T, KOCH B P, 2006. Thermogenic organic matter dissolved in the abyssal ocean[J]. Marine Chemistry, 102(3-4): 208-217.
|
[21] |
ESTES E R, BERTI D, COFFEY N R, et al, 2019. Abiotic synthesis of graphite in hydrothermal vents[J]. Nature Communications, 10(1): 5179.
doi: 10.1038/s41467-019-13216-z
pmid: 31729377
|
[22] |
FANG YIN, CHEN YINGJUN, HUANG GUOPEI, et al, 2021. Particulate and dissolved black carbon in coastal China seas: spatiotemporal variations, dynamics, and potential implications[J]. Environmental Science & Technology, 55(1): 788-796.
|
[23] |
FENG DONG, POHLMAN J W, PECKMANN J, et al, 2021. Contribution of deep-sourced carbon from hydrocarbon seeps to sedimentary organic carbon: evidence from radiocarbon and stable isotope geochemistry[J]. Chemical Geology, 585: 120572.
|
[24] |
FENG JUNXI, LI NIU, LUO MIN, et al, 2020. A quantitative assessment of methane-derived carbon cycling at the cold seeps in the northwestern South China Sea[J]. Minerals, 10(3): 256.
|
[25] |
FLORES-CERVANTES D X, PLATA D L, MACFARLANE J K, et al, 2009. Black carbon in marine particulate organic carbon: inputs and cycling of highly recalcitrant organic carbon in the Gulf of Maine[J]. Marine Chemistry, 113(3-4): 172-181.
|
[26] |
FU WENJING, QI YUANZHI, LUO CHUNLE, et al, 2023. Distinct radiocarbon ages reveal two black carbon pools preserved in large river estuarine sediments[J]. Environmental Science & Technology, 57(15): 6216-6227.
|
[27] |
GLUD R N, WENZHÖFER F, MIDDELBOE M, et al, 2013. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth[J]. Nature Geoscience, 6(4): 284-288.
|
[28] |
GRIFFIN J J, GOLDBERG E D, 1975. The fluxes of elemental carbon in coastal marine sediments[J]. Limnology and Oceanography, 20(3): 456-463.
|
[29] |
GUSTAFSSON Ö, GSCHWEND P M, 1998. The flux of black carbon to surface sediments on the New England continental shelf[J]. Geochimica et Cosmochimica Acta, 62(3): 465-472.
|
[30] |
HAMMES K, SCHMIDT M W I, SMERNIK R J, et al, 2007. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere[J]. Global Biogeochemical Cycles, 21(3): GB3016.
|
[31] |
HAWKES J A, ROSSEL P E, STUBBINS A, et al, 2015. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation[J]. Nature Geoscience, 8(11): 856-860.
doi: 10.1038/NGEO2543
|
[32] |
HAWKES J A, HANSEN C T, GOLDHAMMER T, et al, 2016. Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions[J]. Geochimica et Cosmochimica Acta, 175: 68-85.
|
[33] |
HEDGES J I, EGLINTON G, HATCHER P G, et al, 2000. The molecularly-uncharacterized component of nonliving organic matter in natural environments[J]. Organic Geochemistry, 31(10): 945-958.
|
[34] |
JONES M W, COPPOLA A I, SANTÍN C, et al, 2020. Fires prime terrestrial organic carbon for riverine export to the global oceans[J]. Nature Communications, 11(1): 2791.
doi: 10.1038/s41467-020-16576-z
pmid: 32494057
|
[35] |
JOYE S B, 2020. The geology and biogeochemistry of hydrocarbon seeps[J]. Annual Review of Earth and Planetary Sciences, 48: 205-231.
|
[36] |
KANG YANJU, WANG XUCHEN, DAI MINHAN, et al, 2009. Black carbon and polycyclic aromatic hydrocarbons (PAHs) in surface sediments of China’s marginal seas[J]. Chinese Journal of Oceanology and Limnology, 27(2): 297-308.
|
[37] |
KNITTEL K, BOETIUS A, 2009. Anaerobic oxidation of methane: progress with an unknown process[J]. Annual Review of Microbiology, 63: 311-334.
doi: 10.1146/annurev.micro.61.080706.093130
pmid: 19575572
|
[38] |
KUHLBUSCH T A J, 1998. Black carbon and the carbon cycle[J]. Science, 280(5371): 1903-1904.
|
[39] |
KUZYAKOV Y, SUBBOTINA I, CHEN HAIQING, et al, 2009. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling[J]. Soil Biology and Biochemistry, 41(2): 210-219.
|
[40] |
LEHMANN J, 2007. A handful of carbon[J]. Nature, 447(7141): 143-144.
|
[41] |
LEHMANN J, COWIE A, MASIELLO C A, et al, 2021. Biochar in climate change mitigation[J]. Nature Geoscience, 14(12): 883-892.
|
[42] |
LI MENGJUN, WAN SHIMING, COLIN C, et al, 2023a. Expansion of C4 plants in South China and evolution of East Asian monsoon since 35 Ma: black carbon records in the northern South China Sea[J]. Global and Planetary Change, 223: 104079.
|
[43] |
LI NIU, JIN MENG, PECKMANN J, et al, 2023b. Quantification of the sources of sedimentary organic carbon at methane seeps: a case study from the South China Sea[J]. Chemical Geology, 627: 121463.
|
[44] |
LI XINXIN, BIANCHI T S, ALLISON M A, et al, 2012. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea[J]. Marine Chemistry, 145-147: 37-52.
|
[45] |
LIM B, CACHIER H, 1996. Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays[J]. Chemical Geology, 131(1-4): 143-154.
|
[46] |
LIN H T, REPETA D J, XU LI, et al, 2019. Dissolved organic carbon in basalt-hosted deep subseafloor fluids of the Juan de Fuca Ridge flank[J]. Earth and Planetary Science Letters, 513: 156-165.
|
[47] |
LIU JINGYU, WANG NAN, XIA CUIMEI, et al, 2022. Differential mobilization and sequestration of sedimentary black carbon in the East China Sea[J]. Earth and Planetary Science Letters, 594: 117739.
|
[48] |
LIU JINKE, HAN GUILIN, 2021. Tracing riverine particulate black carbon sources in Xijiang River Basin: insight from stable isotopic composition and Bayesian mixing model[J]. Water Research, 194: 116932.
|
[49] |
LOHMANN R, BOLLINGER K, CANTWELL M, et al, 2009. Fluxes of soot black carbon to South Atlantic sediments[J]. Global Biogeochemical Cycles, 23(1): GB1015.
|
[50] |
LUTHER III G W, 2021. Hydrothermal vents are a source of old refractory organic carbon to the deep ocean[J]. Geophysical Research Letters, 48(17): e2021GL094869.
|
[51] |
MASIELLO C A, DRUFFEL E R M, 1998. Black carbon in deep-sea sediments[J]. Science, 280(5371): 1911-1913.
|
[52] |
MASIELLO C A, DRUFFEL E R M, 2003. Organic and black carbon 13C and 14C through the Santa Monica Basin sediment oxic‐anoxic transition[J]. Geophysical Research Letters, 30(4): 1185.
|
[53] |
MASIELLO C A, 2004. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 92(1-4): 201-213.
|
[54] |
MCCARTHY M D, BEAUPRÉ S R, WALKER B D, et al, 2011. Chemosynthetic origin of 14C-depleted dissolved organic matter in a ridge-flank hydrothermal system[J]. Nature Geoscience, 4(1): 32-36.
|
[55] |
MIDDELBURG J J, NIEUWENHUIZE J, VAN BREUGEL P, 1999. Black carbon in marine sediments[J]. Marine Chemistry, 65(3-4): 245-252.
|
[56] |
NAN JINGBO, KING H E, DELEN G, et al, 2021. The nanogeochemistry of abiotic carbonaceous matter in serpentinites from the Yap Trench, western Pacific Ocean[J]. Geology, 49(3): 330-334.
|
[57] |
NIGGEMANN J, HAWKES J A, ROSSEL P E, et al, 2016. Hydrothermal systems are a sink for dissolved black carbon in the deep ocean[C]// Proceedings of the American geophysical union, ocean sciences meeting 2016. Louisiana: American Geophysical Union:91807.
|
[58] |
OPSAHL S P, ZEPP R G, 2001. Photochemically-induced alteration of stable carbon isotope ratios (δ13C) in terrigenous dissolved organic carbon[J]. Geophysical Research Letters, 28(12): 2417-2420.
|
[59] |
OSBURN C L, MORRIS D P, THORN K A, et al, 2001. Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation[J]. Biogeochemistry, 54(3): 251-278.
|
[60] |
PEI WENQIANG, WAN SHIMING, CLIFT P D, et al, 2020. Human impact overwhelms long-term climate control of fire in the Yangtze River Basin since 3.0 ka BP[J]. Quaternary Science Reviews, 230: 106165.
|
[61] |
POHLMAN J W, BAUER J E, WAITE W F, et al, 2011. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans[J]. Nature Geoscience, 4(1): 37-41.
|
[62] |
QI YUANZHI, FU WENJING, TIAN JIWEI, et al, 2020. Dissolved black carbon is not likely a significant refractory organic carbon pool in rivers and oceans[J]. Nature Communications, 11(1): 5051.
doi: 10.1038/s41467-020-18808-8
pmid: 33028806
|
[63] |
REN PENG, LIU YANGUANG, SHI XUEFA, et al, 2019. Sources and sink of black carbon in Arctic Ocean sediments[J]. Science of the Total Environment, 689: 912-920.
doi: 10.1016/j.scitotenv.2019.06.437
|
[64] |
REN PENG, LUO CHUNLE, ZHANG HONGMEI, et al, 2022. Isotopic records of ancient wildfires in C4 grasses preserved in the sediment of the ross sea, Antarctica[J]. Geophysical Research Letters, 49(13): e2022GL098979.
|
[65] |
SALVADÓ J A, BRÖDER L, ANDERSSON A, et al, 2017. Release of black carbon from thawing permafrost estimated by sequestration fluxes in the east Siberian arctic shelf recipient[J]. Global Biogeochemical Cycles, 31(10): 1501-1515.
|
[66] |
SHEN XINGYAN, WAN SHIMING, COLIN C, et al, 2018. Increased seasonality and aridity drove the C4 plant expansion in Central Asia since the Miocene-Pliocene boundary[J]. Earth and Planetary Science Letters, 502: 74-83.
|
[67] |
SIMONEIT B R T, 1993. Aqueous high-temperature and high-pressure organic geochemistry of hydrothermal vent systems[J]. Geochimica et Cosmochimica Acta, 57(14): 3231-3243.
|
[68] |
SMITH D M, GRIFFIN J J, GOLDBERG E D, 1973. Elemental carbon in marine sediments: a baseline for burning[J]. Nature, 241(5387): 268-270.
|
[69] |
STUBBINS A, NIGGEMANN J, DITTMAR T, 2012. Photo-lability of deep ocean dissolved black carbon[J]. Biogeosciences, 9(5): 1661-1670.
|
[70] |
SUESS E, 2020. Marine cold seeps: background and recent advances[M]// WILKES H. Hydrocarbons, oils and lipids: diversity, origin, chemistry and fate. Cham: Springer: 747-767.
|
[71] |
WAGNER S, BRANDES J, SPENCER R G M, et al, 2019. Isotopic composition of oceanic dissolved black carbon reveals non-riverine source[J]. Nature Communications, 10(1): 5064.
doi: 10.1038/s41467-019-13111-7
pmid: 31699996
|
[72] |
WANG XUCHEN, CHEN R F, WHELAN J, et al, 2001. Contribution of “Old” carbon from natural marine hydrocarbon seeps to sedimentary and dissolved organic carbon pools in the Gulf of Mexico[J]. Geophysical Research Letters, 28(17): 3313-3316.
|
[73] |
WOOLF D, AMONETTE J E, STREET-PERROTT F A, et al, 2010. Sustainable biochar to mitigate global climate change[J]. Nature Communications, 1(1): 56.
|
[74] |
WU YULING, YA MIAOLEI, CHEN HANZHE, et al, 2019. Distribution and isotopic composition of sedimentary black carbon in a subtropical estuarine-coastal region of the western Taiwan Strait: Implications for tracing anthropogenic inputs[J]. Science of the Total Environment, 684: 509-518.
|
[75] |
WULANDARI I, KATZ S, KELLY R P, et al, 2023. Sedimentary accumulation of black carbon on the east coast of the United States[J]. Geophysical Research Letters, 50(1): e2022GL101509.
|
[76] |
XU CUILING, WU NENGYOU, SUN ZHILEI, et al, 2018a. Methane seepage inferred from pore water geochemistry in shallow sediments in the western slope of the Mid-Okinawa Trough[J]. Marine and Petroleum Geology, 98: 306-315.
|
[77] |
XU YUNPING, GE HUANGMIN, FANG JIASONG, 2018b. Biogeochemistry of hadal trenches: recent developments and future perspectives[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 155: 19-26.
|
[78] |
YAMASHITA Y, NAKANE M, MORI Y, et al, 2022. Fate of dissolved black carbon in the deep Pacific Ocean[J]. Nature Communications, 13: 307.
doi: 10.1038/s41467-022-27954-0
pmid: 35027558
|
[79] |
YAMASHITA Y, MORI Y, OGAWA H, 2023. Hydrothermal-derived black carbon as a source of recalcitrant dissolved organic carbon in the ocean[J]. Science Advances, 9(6): eade3807.
|
[80] |
YANG SHANSHAN, LV YONGXIN, LIU XIPENG, et al, 2020. Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea[J]. Nature Communications, 11(1): 3941.
doi: 10.1038/s41467-020-17860-8
pmid: 32770005
|
[81] |
YANG WEIFENG, GUO LAODONG, 2018. Sources and burial fluxes of soot black carbon in sediments on the Mackenzie, Chukchi, and Bering Shelves[J]. Continental Shelf Research, 155: 1-10.
|
[82] |
ZHANG PENG, MENG XINGYING, LIU AIJU, et al, 2023. Biochar-derived dissolved black carbon accelerates ferrihydrite microbial transformation and subsequent imidacloprid degradation[J]. Journal of Hazardous Materials, 446: 130685.
|
[83] |
ZHANG XI, XU YUNPING, XIAO WENJIE, et al, 2022. The hadal zone is an important and heterogeneous sink of black carbon in the ocean[J]. Communications Earth & Environment, 3: 25.
|
[84] |
ZHOU BIN, BIRD M, ZHENG HONGBO, et al, 2017. New sedimentary evidence reveals a unique history of C4 biomass in continental East Asia since the early Miocene[J]. Scientific Reports, 7: 170.
|
[85] |
ZIMMERMAN A R, 2010. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)[J]. Environmental Science & Technology, 44(4): 1295-1301.
|