[1] 赵伟, 杨永增, 于卫东, 等. 长期极值统计理论及其在海洋环境参数统计分析中的应用[J]. 海洋科学进展, 2003, 21(4): 471-476.
[2] 中华人民共和国交通部.海港水文规范(JTJ213-98) [S]. 北京: 人民交通出版社, 1998:15.
[3] 丰鉴章. 年极值波高的分布特点及其频率曲线的选配[J].海洋学报, 1993, 15(6): 142-148.
[4] 曹兵, 王义刚. 设计波高分布函数比较[J]. 海洋湖沼通报, 2007(4): 1-9.
[5] 夏华永, 李树华. 广西沿海年极值波高分析[J]. 热带海洋学报, 2001, 20(2): 1-7.
[6] 张秀芝. Weibull分布参数估计方法及其应用[J]. 气象学报, 1996, 54(1): 108-116.
[7] 曹兵, 王义刚, YOU ZAI-JIN. 三种计算设计波高方法的比较[J]. 海洋工程, 2006, 24(4): 75-80.
[8] EDUARDO S M. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data[J]. Water Resources Research, 2000, 36(3): 737-744
[9] PRESCOTT P, WALDEN A T. Maximum-likelihood estimation of the parameters of the three-parameter generalized extreme-value distribution from censored samples[J]. J Stat Comput Simul, 1983, 6: 241-250.
[10] 金光炎. 广义极值分布及其在水文中的应用[J]. 水文, 1998(2): 9-15.
[11] 刘聪, 秦伟良, 江志红. 基于广义极值分布的设计基本风速及其置信限计算[J]. 东南大学学报: 自然科学版, 2006, 36(2): 331-334.
[12] 陈兴旺. 广义极值分布理论在重现期计算的应用[J]. 气象与减灾研究, 2008, 31(4): 52-54.
[13] FISHER R A. TIPPETT L H. Limiting forms of the frequency distribution of the largest or smallest member of a sample[J]. Proc Cambridge Philos Soc, 1928, 24: 180-190.
[14] JENKINSON A F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements[J]. Quart J Roy Meteorol Soc, 1955, 81: 158-171.
[15] COLES S. An Introduction to Statistical Modeling of Extreme Values[M]. New York: Springer Verlag, 2001: 36-78.
[16] HOSKING J R M, WALLIS J R, WOOD E F. Estimation of the generalized extreme value distribution by the method of probability-weighted moments[J]. Technometrics, 1985, 27(3): 251-261.
[17] HOSKING J R M. L-moments: Analysis and estimation of distributions using linear combinations of order statistics[J]. Journal of the Royal Statistical Society, Series B (Methodological), 1990, 52: 105-124.
[18] CHENG R C H, AMIN N A K. Estimating parameters in continuous univariate distributions with a shifted origin[J]. Journal of the Royal Statistical Society, Series B (Methodological), 1983, 45(3): 394-403.
[19] RANNEBY B. The maximum spacing method: an estimation method related to the maximum likelihood method[J]. Scand J Statist, 1984, 11: 93-112.
[20] MAGNUS E. Alternatives to maximum likelihood estimation based on spacings and the Kullback-Leibler divergence[J]. Journal of Statistical Planning and Inference, 2008, 138: 1778-1791. |