[1] |
艾威, 李茂田, 刘晓强, 等, 2018. 长江口南槽最大浑浊带枯季大小潮悬沙峰特征及其动力机制[J]. 海洋与湖沼, 49(4):769-778.
|
|
AI WEI, LI MAOTIAN, LIU XIAOQIANG, et al, 2018. Hydrodynamics of SSC peak in dry season of the south passage of Changjiang River estuary[J]. Oceanologia et Limnologia Sinica, 49(4):769-778 (in Chinese with English abstract).
|
[2] |
曹沛奎, 严肃庄, 1996. 长江口悬沙锋及其对物质输移的影响[J]. 华东师范大学学报(自然科学版), (1):85-94.
|
|
CAO PEIKUI, YAN SUZHUANG, 1996. Suspended sediments front and its impacts on the materials transport of the Changjiang Estuary[J]. Journal of East China Normal University (Natural Science), (1):85-94 (in Chinese with English abstract).
|
[3] |
陈雨, 沈芳, 2014. 长江口邻近海域冬季漫衰减系数及其遥感反演[J]. 海洋湖沼通报, (4):27-34.
|
|
CHEN YU, SHEN FANG, 2014. Diffuse attenuation coefficient of remote sensing inversion in Yangtze River Estuary’s adjacent sea area in winter[J]. Transactions of Oceanology and Limnology, (4):27-34 (in Chinese with English abstract).
|
[4] |
何文珊, 陆健健, 2001. 高浓度悬沙对长江河口水域初级生产力的影响[J]. 中国生态农业学报, 9(4):24-27.
|
|
HE WENSHAN, LU JIANJIAN, 2001. Effects of high-density suspended sediments on primary production at the Yangtze Estuary[J]. Chinese Journal of Eco-Agriculture, 9(4):24-27 (in Chinese with English abstract).
|
[5] |
胡连波, 张亭禄, 2012. 一种东中国海水体漫衰减系数Kd(490)的反演方法[J]. 海洋技术, 31(4):60-63.
|
|
HU LIANBO, ZHANG ZHANG, 2012. A method to derive the diffuse attenuation coefficient Kd(490) in the East China Sea[J]. Ocean Technology, 31(4):60-63 (in Chinese with English abstract).
|
[6] |
乐成峰, 李云梅, 查勇, 等, 2009. 太湖水体漫射衰减系数的光学特性及其遥感反演模型[J]. 应用生态学报, 20(2):337-343.
|
|
LE CHENGFENG, LI YUNMEI, ZHA YONG, et al, 2009. Optical properties and remote sensing retrieval model of diffuse attenuation coefficient of Taihu Lake water body[J]. Chinese Journal of Applied Ecology, 20(2):337-343 (in Chinese with English abstract).
|
[7] |
李素菊, 吴倩, 王学军, 等, 2002. 巢湖浮游植物叶绿素含量与反射光谱特征的关系[J]. 湖泊科学, 14(3):228-234.
|
|
LI SUJU, WU QIAN, WANG XUEJUN, et al, 2002. Correlations between reflectance spectra and contents of chlorophyll-a in Chaohu Lake[J]. Journal of Lake Sciences, 14(3):228-234 (in Chinese with English abstract).
|
[8] |
丘仲锋, 崔廷伟, 何宜军, 2011. 基于水体光谱特性的赤潮分布信息MODIS遥感提取[J]. 光谱学与光谱分析, 31(8):2233-2237.
|
|
QIU ZHONGFENG, CUI TINGWEI, HE YIJUN, 2011. Retrieve of red tide distributions from MODIS data based on the characteristics of water spectrum[J]. Spectroscopy and Spectral Analysis, 31(8):2233-2237 (in Chinese with English abstract).
|
[9] |
沈焕庭, 贺松林, 潘定安, 等, 1992. 长江河口最大浑浊带研究[J]. 地理学报, 47(5):472-479.
|
|
SHEN HUANTING, HE SONGLIN, PAN DINGAN, et al, 1992. A study of turbidity maximum in the Changjiang Estuary[J]. Acta Geographica Sinica, 47(5):472-479 (in Chinese with English abstract).
|
[10] |
沈明, 段洪涛, 曹志刚, 等, 2017. 适用于多种卫星数据的太湖水体漫衰减系数估算算法[J]. 湖泊科学, 29(6):1473-1484.
|
|
SHEN MING, DUAN HONGTAO, CAO ZHIGANG, et al, 2017. Remote sensing estimation algorithm of diffuse attenuation coefficient applicable to different satellite data in Lake Taihu, China[J]. Journal of Lake Sciences, 29(6):1473-1484 (in Chinese with English abstract).
|
[11] |
孙德勇, 李云梅, 王桥, 等, 2009. 基于实测高光谱的太湖水体悬浮物浓度遥感估算研究[J]. 红外与毫米波学报, 28(2):124-128.
|
|
SUN DEYONG, LI YUNMEI, WANG QIAO, et al, 2009. Study on remote sensing estimation of suspended matter concentrations based on in situ hyperspectral data in Lake Tai waters[J]. Journal of Infrared and Millimeter Waves, 28(2):124-128 (in Chinese with English abstract).
|
[12] |
唐军武, 王晓梅, 宋庆君, 等, 2004. 黄、东海二类水体水色要素的统计反演模式[J]. 海洋科学进展, 22(S1):1-7.
|
|
TANG JUNWU, WANG XIAOMEI, SONG QINGJUN, et al, 2004. Statistical inversion models for case Ⅱ water color elements in the Yellow Sea and East China Sea[J]. Advances in Marine Science, 22(S1):1-7 (in Chinese with English abstract).
|
[13] |
唐军武, 丁静, 田纪伟, 等, 2005. 黄东海二类水体三要素浓度反演的神经网络模型[J]. 高技术通讯, 15(3):83-88.
|
|
TANG JUNWU, DING JING, TIAN JIWEI, et al, 2005. Neural network models for the retrieval of chlorophyll, total suspended matter, and gelbstoff concentrations of case-Ⅱ waters in Yellow Sea and East China Sea[J]. Chinese High Technology Letters, 15(3):83-88 (in Chinese with English abstract).
|
[14] |
王晓梅, 唐军武, 丁静, 等, 2005. 黄海、东海二类水体漫衰减系数与透明度反演模式研究[J]. 海洋学报, 27(5):38-45.
|
|
WANG XIAOMEI, TANG JUNWU, DING JING, et al, 2005. The retrieval algorithms of diffuse attenuation and transparency for the case-Ⅱ waters of the Huanghai Sea and the East China Sea[J]. Acta Oceanologica Sinica, 27(5):38-45 (in Chinese with English abstract).
|
[15] |
杨跃忠, 曹文熙, 孙兆华, 等, 2009. 海洋高光谱辐射实时观测系统的研制[J]. 光学学报, 29(1):102-107.
|
|
YANG YUEZHONG, CAO WENXI, SUN ZHAOHUA, et al, 2009. Development of real-time hyperspectral radiation sea-observation system[J]. Acta Optica Sinica, 29(1):102-107 (in Chinese with English abstract).
|
[16] |
张清凌, 陈楚群, 施平, 2003. 南沙群岛海域水体漫衰减系数Kd(490)的特性研究[J]. 热带海洋学报, 22(1):9-16.
|
|
ZHANG QINGLING, CHEN CHUQUN, SHI PING, 2003. Characteristics of Kd(490) around Nansha Islands in South China Sea[J]. Journal of Tropical Oceanography, 22(1):9-16 (in Chinese with English abstract).
|
[17] |
AUSTIN R W, 1974. The remote sensing of spectral radiance from below the ocean surface[M] //JERLOV N G, NIELSEN E S. Optical Aspects of Oceanography. New York: Academic Press, 14:317-344.
|
[18] |
CHEN JUN, CUI TINGWEI, TANG JUNWU, et al, 2014. Remote sensing of diffuse attenuation coefficient using MODIS imagery of turbid coastal waters: A case study in Bohai Sea[J]. Remote Sensing of Environment, 140:78-93.
doi: 10.1016/j.rse.2013.08.031
|
[19] |
GOMES A C C, BERNARDO N, DO CARMO A C, et al, 2018. Diffuse attenuation coefficient retrieval in CDOM dominated inland water with high chlorophyll-a concentrations[J]. Remote Sensing, 10(7):1063.
doi: 10.3390/rs10071063
|
[20] |
GORDON H R, 1989. Dependence of the diffuse reflectance of natural waters on the sun angle[J]. Limnology and Oceanography, 34(8):1484-1489.
|
[21] |
GORDON H R, BROWN O B, EVANS R H, et al, 1988. A semianalytic radiance model of ocean color[J]. Journal of Geophysical Research: Atmospheres, 93(D9):10909-10924.
|
[22] |
GORDON H R, BROWN O B, JACOBS M M, 1975. Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean[J]. Applied Optics, 14(2):417-427.
doi: 10.1364/AO.14.000417
pmid: 20134901
|
[23] |
IOCCG, 2000. Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters[R]// SATHYENDRANATH S. Reports of the International Ocean-Colour Coordinating Group, No. 3. Dartmouth, Canada: IOCCG.
|
[24] |
JIANG DALIN, MATSUSHITA B, SETIAWAN F, et al, 2019. An improved algorithm for estimating the Secchi disk depth from remote sensing data based on the new underwater visibility theory[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 152:13-23.
|
[25] |
KRATZER S, BROCKMANN C, MOORE G, 2008. Using MERIS full resolution data to monitor coastal waters - A case study from Himmerfjarden, a fjord-like bay in the northwestern Baltic Sea[J]. Remote Sensing of Environment, 112(5):2284-2300.
|
[26] |
KRATZER S, HÄKANSSON B, SAHLIN C, 2003. Assessing Secchi and photic zone depth in the Baltic Sea from satellite data[J]. AMBIO: A Journal of the Human Environment, 32(8):577-585.
doi: 10.1579/0044-7447-32.8.577
|
[27] |
LEE ZHONGPING, CARDER K L, ARNONE R A, 2002. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters[J]. Applied Optics, 41(27):5755-5772.
pmid: 12269575
|
[28] |
LEE ZHONGPING, DARECKI M, CARDER K L, et al, 2005a. Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods[J]. Journal of Geophysical Research: Oceans, 110(C2):C02017.
|
[29] |
LEE ZHONGPING, DU KEPING, ARNONE R, 2005b. A model for the diffuse attenuation coefficient of downwelling irradiance[J]. Journal of Geophysical Research: Oceans, 110(C2):C02016.
|
[30] |
LEE ZHONGPING, SHANG SHAOLING, HU CHUANMIN, et al, 2015. Secchi disk depth: A new theory and mechanistic model for underwater visibility[J]. Remote Sensing of Environment, 169:139-149.
doi: 10.1016/j.rse.2015.08.002
|
[31] |
LEE ZHONGPING, SHANG SHAOLING, STAVN R, 2018. AOPs are not additive: on the biogeo-optical modeling of the diffuse attenuation coefficient[J]. Frontiers in Marine Science, 5:8.
|
[32] |
MAJOZI N P, SALAMA M S, BERNARD S, et al, 2014. Remote sensing of euphotic depth in shallow tropical inland waters of Lake Naivasha using MERIS data[J]. Remote Sensing of Environment, 148:178-189.
|
[33] |
MOREL A, PRIEUR L, 1977. Analysis of variations in ocean color[J]. Limnology and Oceanography, 22(4):709-722.
|
[34] |
MUELLER J L, TREES C C, 1997. Revised SeaWiFS prelaunch algorithm for the diffuse attenuation coefficient Kd(490)[R]. NASA SeaWiFS technical report series, TM-104566. Greenbelt, Maryland: Goddard Space Flight Space Center.
|
[35] |
ORGANELLI E, BARBIEUX M, CLAUSTRE H, et al, 2017. Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications[J]. Earth System Science Data, 9(2):861-880.
|
[36] |
PLATT T, SATHYENDRANATH S, CAVERHILL C M, et al, 1988. Ocean primary production and available light: Further algorithms for remote sensing[J]. Deep Sea Research Part A: Oceanographic Research Papers, 35(6):855-879.
|
[37] |
SAULQUIN B, HAMDI A, GOHIN F, et al, 2013. Estimation of the diffuse attenuation coefficient KdPAR using MERIS and application to seabed habitat mapping[J]. Remote Sensing of Environment, 128:224-233.
doi: 10.1016/j.rse.2012.10.002
|
[38] |
SHEN MING, DUAN HONGTAO, CAO ZHIGANG, et al, 2017. Determination of the downwelling diffuse attenuation coefficient of lake water with the sentinel-3A OLCI[J]. Remote Sensing, 9(12):1246.
|
[39] |
SUN DEYONG, QIU ZHONGFENG, LI YUNMEI, et al, 2014. New strategy to improve estimation of diffuse attenuation coefficient for highly turbid inland waters[J]. International Journal of Remote Sensing, 35(9):3350-3371.
|
[40] |
TIWARI S P, SHANMUGAM P, 2014. A robust algorithm to determine diffuse attenuation coefficient of downwelling irradiance from satellite data in coastal oceanic waters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(5):1616-1622.
|
[41] |
WANG MENGHUA, SON S, HARDING L W Jr, 2009. Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications[J]. Journal of Geophysical Research: Oceans, 114(C10):C10011.
|
[42] |
WERDELL P J, BAILEY S W, 2005. An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation[J]. Remote Sensing of Environment, 98(1):122-140.
doi: 10.1016/j.rse.2005.07.001
|
[43] |
ZANEVELD J R V, BOSS E, BARNARD A, 2001. Influence of Surface Waves on Measured and Modeled Irradiance Profiles[J]. Applied Optics, 40(9):1442-1449.
doi: 10.1364/ao.40.001442
pmid: 18357135
|
[44] |
ZHANG TINGLU, FELL F, 2007. An empirical algorithm for determining the diffuse attenuation coefficient Kd in clear and turbid waters from spectral remote sensing reflectance[J]. Limnology & Oceanography Methods, 5(12):457-462.
|
[45] |
ZHAO JUN, BARNES B, MELO N, et al, 2013. Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters[J]. Remote Sensing of Environment, 131:38-50.
|
[46] |
ZHAO JUN, CAO WENXI, WANG GUIFEN, et al, 2009. The variations in optical properties of CDOM throughout an algal bloom event[J]. Estuarine, Coastal and Shelf Science, 82(2):225-232.
|