[1] |
陈思婷, 2021. 围填海对白骨壤呼吸与能量代谢的影响[J]. 广西科学院学报, 37(3): 307-313.
|
|
CHEN SITING, 2021. Effects of reclamation on respiration and energy metabolism of Avicennia marina[J]. Journal of Guangxi Academy of Sciences, 37(3): 307-313. (in Chinese with English abstract)
|
[2] |
代捷, 程皓, 由文辉, 等, 2020. 秋茄幼苗生长生理及形态对不同潮汐处理的响应[J]. 生态科学, 39(6): 38-44.
|
|
DAI JIE, CHENG HAO, YOU WENHUI, et al, 2020. Responses of growth, physiology and morphology of Kandelia obovata seedlings to different tidal treatments[J]. Ecological Science, 39(6): 38-44. (in Chinese with English abstract)
|
[3] |
范航清, 王文卿, 2017. 中国红树林保育的若干重要问题[J]. 厦门大学学报(自然科学版), 56(3): 323-330.
|
|
FAN HANGQING, WANG WENQING, 2017. Some thematic issues for mangrove conservation in China[J]. Journal of Xiamen University (Natural Science), 56(3): 323-330. (in Chinese with English abstract)
|
[4] |
傅海峰, 陶伊佳, 王文卿, 2014. 海平面上升对中国红树林影响的几个问题[J]. 生态学杂志, 33(10): 2842-2848.
|
|
FU HAIFENG, TAO YIJIA, WANG WENQING, 2014. Some issues about the impacts of sea level rise on mangroves in China[J]. Chinese Journal of Ecology, 33(10): 2842-2848. (in Chinese with English abstract)
|
[5] |
廖宝文, 邱凤英, 张留恩, 等, 2010. 红树植物白骨壤小苗对模拟潮汐淹浸时间的生长适应性[J]. 环境科学, 31(5): 1345-1351.
|
|
LIAO BAOWEN, QIU FENGYING, ZHANG LIUEN, et al, 2010. Adaptability of mangrove Avicennia marina seedlings to simulated tide-inundated times[J]. Environmental Science, 31(5): 1345-1351. (in Chinese with English abstract)
doi: 10.1021/es9605376
|
[6] |
林鹏, 2001. 中国红树林研究进展[J]. 厦门大学学报(自然科学版), 40(2): 592-603.
|
|
LIN PENG, 2001. A review on the mangrove research in China[J]. Journal of Xiamen University (Natural Science), 40(2): 592-603. (in Chinese with English abstract)
|
[7] |
刘逸泠, 覃盈盈, 郑海雷, 2017. 红树植物耐水淹和高盐适应性研究进展[J]. 厦门大学学报(自然科学版), 56(3): 314-322.
|
|
LIU YILING, QIN YINGYING, ZHENG HAILEI, 2017. Research progresses of water logging tolerance and high saline adaptation of mangrove plants[J]. Journal of Xiamen University (Natural Science), 56(3): 314-322. (in Chinese with English abstract)
|
[8] |
王友绍, 2019. 红树林分子生态学[M]. 北京: 科学出版社: 23-24.
|
|
WANG YOUSHAO, 2019. Molecular ecology of mangroves[M]. Beijing: Science Press: 23-24. (in Chinese)
|
[9] |
王友绍, 2021. 全球气候变化对红树林生态系统的影响、挑战与机遇[J]. 热带海洋学报, 40(3): 1-14.
doi: 10.11978/YG2020006
|
|
WANG YOUSHAO, 2021. Impacts, challenges and opportunities of global climate change on mangrove ecosystems[J]. Journal of Tropical Oceanography, 40(3): 1-14. (in Chinese with English abstract)
doi: 10.11978/YG2020006
|
[10] |
叶勇, 刘美龄, 卢昌义, 等, 2007. 木榄胚轴萌发及幼苗生长与生理对水渍和底质条件的响应[J]. 海洋与湖沼, 38(1): 84-90.
|
|
YE YONG, LIU MEILING, LU CHANGYI, et al, 2007. Propagule development of Bruguiera gymnorrhiza under different tidal and sedimental conditions[J]. Oceanologia et Limnologia Sinica, 38(1): 84-90. (in Chinese with English abstract)
|
[11] |
张艳婷, 张建军, 王建修, 等, 2016. 长期水淹对‘中山杉118’幼苗呼吸代谢的影响[J]. 植物生态学报, 40(6): 585-593.
doi: 10.17521/cjpe.2015.0292
|
|
ZHANG YANTING, ZHANG JIANJUN, WANG JIANXIU, et al, 2016. Effects of long-term flooding on respiratory metabolism of Taxodium ‘Zhongshansha 118’ seedlings[J]. Chinese Journal of Plant Ecology, 40(6): 585-593. (in Chinese with English abstract)
doi: 10.17521/cjpe.2015.0292
|
[12] |
ARMSTRONG W, BECKETT P M, COLMER T D, et al, 2019. Tolerance of roots to low oxygen: 'Anoxic' cores, the phytoglobin-nitric oxide cycle, and energy or oxygen sensing[J]. Journal of Plant Physiology, 239: 92-108.
doi: S0176-1617(19)30055-0
pmid: 31255944
|
[13] |
BAILEY-SERRES J, LEE S C, BRINTON E, 2012. Waterproofing crops: effective flooding survival strategies[J]. Plant Physiology, 160(4): 1698-1709.
doi: 10.1104/pp.112.208173
|
[14] |
BORELLA J, BECKER R, LIMA M C, et al, 2019. Nitrogen source influences the antioxidative system of soybean plants under hypoxia and re-oxygenation[J]. Scientia Agricola, 76(1): 51-62.
doi: 10.1590/1678-992x-2017-0195
|
[15] |
BOUMA T J, YANAI R D, ELKIN A D, et al, 2001. Estimating age-dependent costs and benefits of roots with contrasting life span: comparing apples and oranges[J]. New Phytologist, 150(3): 685-695.
doi: 10.1046/j.1469-8137.2001.00128.x
|
[16] |
CHEN LUZHEN, WANG WENQING, LIN PENG, 2005. Photosynthetic and physiological responses of Kandelia candel L. Druce seedlings to duration of tidal immersion in artificial seawater[J]. Environmental and Experimental Botany, 54(3): 256-266.
doi: 10.1016/j.envexpbot.2004.09.004
|
[17] |
CHENG HAO, WANG YOUSHAO, FEI JIAO, 2015. Differences in root aeration, iron plaque formation and waterlogging tolerance in six mangroves along a continues tidal gradient[J]. Ecotoxicology, 24(7): 1659-1667.
doi: 10.1007/s10646-015-1474-0
|
[18] |
CHENG HAO, LIU YONG, JIANG ZHAOYU, et al, 2020a. Radial oxygen loss is correlated with nitrogen nutrition in mangroves[J]. Tree Physiology, 40(11): 1548-1560.
doi: 10.1093/treephys/tpaa089
|
[19] |
CHENG HAO, WU MEILIN, LI CHANGDA, et al, 2020b. Dynamics of radial oxygen loss in mangroves subjected to waterlogging[J]. Ecotoxicology, 29(6): 684-690.
doi: 10.1007/s10646-020-02221-4
|
[20] |
FUJITA S, NOGUCHI K, TANGE T, 2021. Different waterlogging depths affect spatial distribution of fine root growth for Pinus thunbergii seedling[J]. Frontiers in Plant Science, 12: 614764.
doi: 10.3389/fpls.2021.614764
|
[21] |
GOOD A G, MUENCH D G, 1993. Long-term anaerobic metabolism in root tissue (metabolic products of pyruvate metabolism)[J]. Plant Physiology, 101(4): 1163-1168.
pmid: 12231768
|
[22] |
GU XIANBIN, XUE LIAN, LU LINGHONG, et al, 2021. Melatonin enhances the waterlogging tolerance of Prunus persica by modulating antioxidant metabolism and anaerobic respiration[J]. Journal of Plant Growth Regulation, 40(5): 2178-2190.
doi: 10.1007/s00344-020-10263-5
|
[23] |
HE LIZHONG, LI BIN, LU XIAOMIN, et al, 2015. The effect of exogenous calcium on mitochondria, respiratory metabolism enzymes and ion transport in cucumber roots under hypoxia[J]. Scientific Reports, 5: 11391.
doi: 10.1038/srep11391
pmid: 26304855
|
[24] |
HE ZIWEN, LI XINNIAN, YANG MING, et al, 2019. Speciation with gene flow via cycles of isolation and migration: insights from multiple mangrove taxa[J]. National Science Review, 6(2): 275-288.
doi: 10.1093/nsr/nwy078
pmid: 31258952
|
[25] |
JIANG SHUAI, YAN WEI, 2017. Succinate in the cancer-immune cycle[J]. Cancer Letters, 390: 45-47.
doi: S0304-3835(17)30042-3
pmid: 28109906
|
[26] |
JIANG WU, WU ZHIGANG, WANG TAO, et al, 2020. Physiological and transcriptomic analyses of cadmium stress response in Dendrobium officinale seedling[J]. Plant Physiology and Biochemistry, 148: 152-165.
doi: 10.1016/j.plaphy.2020.01.010
|
[27] |
LI YUANFU, ZHANG QIANNAN, YU YINFANG, et al, 2020. Integrated proteomics, metabolomics and physiological analyses for dissecting the toxic effects of halosulfuron-methyl on soybean seedlings (Glycine max merr.)[J]. Plant Physiology and Biochemistry, 157: 303-315.
doi: 10.1016/j.plaphy.2020.10.033
|
[28] |
LORETI E, VAN VEEN H, PERATA P, 2016. Plant responses to flooding stress[J]. Current Opinion in Plant Biology, 33: 64-71.
doi: S1369-5266(16)30088-7
pmid: 27322538
|
[29] |
LOVELOCK C E, CAHOON D R, FRIESS D A, et al, 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise[J]. Nature, 526(7574): 559-563.
doi: 10.1038/nature15538
|
[30] |
LUAN HAIYE, SHEN HUIQUAN, PAN YUHAN, et al, 2018. Elucidating the hypoxic stress response in barley (Hordeum vulgare L.) during waterlogging: a proteomics approach[J]. Scientific Reports, 8(1): 9655.
doi: 10.1038/s41598-018-27726-1
|
[31] |
LUO MANLI, ZHOU XIN, SUN HUAJUN, et al, 2020. Glycine betaine treatment alleviates loss of aroma-related esters in cold-stored Nanguo' pears by regulating the lipoxygenase pathway[J]. Food Chemistry, 316: 126335.
doi: 10.1016/j.foodchem.2020.126335
|
[32] |
LUO MANLI, ZHOU XIN, HAO YI, et al, 2021. Methyl jasmonate pretreatment improves aroma quality of cold-stored 'Nanguo' pears by promoting ester biosynthesis[J]. Food Chemistry, 338: 127846.
doi: 10.1016/j.foodchem.2020.127846
|
[33] |
MAI ZHIMAO, ZENG XIN, WEI XING, et al, 2022. Mangrove restoration promotes the anti-scouribility of the sediments by modifying inherent microbial community and extracellular polymeric substance[J]. Science of the Total Environment, 811: 152369.
doi: 10.1016/j.scitotenv.2021.152369
|
[34] |
MIRO B, ISMAIL A M, 2013. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 4: 269.
|
[35] |
MOHANTY B, WILSON P M, REES T A, 1993. Effects of anoxia on growth and carbohydrate metabolism in suspension cultures of soybean and rice[J]. Phytochemistry, 34(1): 75-82.
doi: 10.1016/S0031-9422(00)90785-4
|
[36] |
PAN DELIN, WANG GANG, WANG TTO, et al, 2019. AdRAP2.3, a novel ethylene response factor VII from Actinidia deliciosa, enhances waterlogging resistance in transgenic tobacco through improving expression levels of PDC and ADH genes[J]. International Journal of Molecular Sciences, 20(5): 1189.
doi: 10.3390/ijms20051189
|
[37] |
PAN JIAWEI, SHARFI R, XU XUEWEN, et al, 2021. Mechanisms of waterlogging tolerance in plants: research progress and prospects[J]. Frontiers in Plant Science, 11: 627331.
doi: 10.3389/fpls.2020.627331
|
[38] |
PEDERSEN O, SAUTER M, COLMER T D, et al, 2021. Regulation of root adaptive anatomical and morphological traits during low soil oxygen[J]. New Phytologist, 229(1): 42-49.
doi: 10.1111/nph.16375
|
[39] |
PEZESHKI S R, DELAUNE R D, MEEDER J F, 1997. Carbon assimilation and biomass partitioning in Avicennia germinans and Rhizophora mangle seedlings in response to soil redox conditions[J]. Environmental and Experimental Botany, 37(2-3): 161-171.
doi: 10.1016/S0098-8472(96)01051-9
|
[40] |
SHINGAKI-WELLS R, MILLAR A H, WHELAN J, et al, 2014. What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and reoxygenation[J]. Plant, Cell & Environment, 37(10): 2260-2277.
|
[41] |
TAMANG B G, MAGLIOZZI J O, MAROOF M A S, et al, 2014. Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings[J]. Plant, Cell & Environment, 37(10): 2350-2365.
|
[42] |
WANG MEIJIAO, HE DING, SHEN FEI, et al, 2019. Effects of soil compaction on plant growth, nutrient absorption, and root respiration in soybean seedlings[J]. Environmental Science and Pollution Research, 26(22): 22835-22845.
doi: 10.1007/s11356-019-05606-z
|
[43] |
WARWICK N W M, BROCK M A, 2003. Plant reproduction in temporary wetlands: the effects of seasonal timing, depth, and duration of flooding[J]. Aquatic Botany, 77(2): 153-167.
doi: 10.1016/S0304-3770(03)00102-5
|
[44] |
XU BENBO, CHENG YONG, ZOU XILING, et al, 2016. Ethanol content in plants of Brassica napus L. correlated with waterlogging tolerance index and regulated by lactate dehydrogenase and citrate synthase[J]. Acta Physiologiae Plantarum, 38(3): 81.
doi: 10.1007/s11738-016-2098-6
|
[45] |
YIN DONGMEI, SUN DAOYANG, HAN ZHUQING, et al, 2019. PhERF2, an ethylene-responsive element binding factor, plays an essential role in waterlogging tolerance of petunia[J]. Horticulture Research, 6: 83.
doi: 10.1038/s41438-019-0165-z
pmid: 31645944
|
[46] |
ZHANG PENG, LYU DEGUO, JIA LUTING, et al, 2017. Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging[J]. BMC Genomics, 18(1): 649.
doi: 10.1186/s12864-017-4055-1
|