热带海洋学报 ›› 2023, Vol. 42 ›› Issue (3): 86-95.doi: 10.11978/2022146CSTR: 32234.14.2022146

• 海洋物理学 • 上一篇    下一篇

基于体散射函数及吸收系数的南海水体漫射衰减系数研究*

张现清1,2(), 李彩1,3(), 周雯1,3, 刘聪1, 许占堂1,3, 曹文熙1,3, 杨跃忠1,3   

  1. 1.热带海洋环境重点实验室(中国科学院南海海洋研究所), 广东 广州 510300
    2.中国科学院大学, 北京 100049
    3.南方海洋科学与工程广东省实验室, 广东 广州 511458
  • 收稿日期:2022-06-27 修回日期:2022-08-12 出版日期:2023-05-10 发布日期:2022-08-24
  • 作者简介:

    张现清(1998—), 女, 山东省济宁市人, 硕士研究生, 主要从事海洋光学研究。email:

    *感谢中国科学院南海海洋研究所海洋光学团队的所有人员, 他们对本次研究实验数据的获取作出了贡献, 感谢国家自然科学基金组织的南海北部调查航次。

  • 基金资助:
    国家自然科学基金(41976181); 国家自然科学基金(41976172); 国家自然科学基金(41976170); 广州市科技计划重点项目(201707020023); 南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项项目(GML2019ZD0305); 热带海洋环境国家重点实验室自主研究项目(LTOZZ1602)

Studying on diffuse attenuation coefficient in the South China Sea based on volume scattering function and absorption coefficient*

ZHANG Xianqing1,2(), LI Cai1,3(), Zhou Wen1,3, LIU Cong1, XU Zhantang1,3, CAO Wenxi1,3, YANG Yuezhong1,3   

  1. 1. State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences), Guangzhou 510301, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
  • Received:2022-06-27 Revised:2022-08-12 Online:2023-05-10 Published:2022-08-24
  • Supported by:
    National Natural Science Foundation of China(41976181); National Natural Science Foundation of China(41976172); National Natural Science Foundation of China(41976170); Science and Technology Planning Project of Guangzhou City China(201707020023); Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0305); Open Project Program of the State Key Laboratory of Tropical Oceanography(LTOZZ1602)

摘要:

漫射衰减系数Kd(z, λ)是估算水下光场及水色要素剖面分布、研究浮游植物光合作用及赤潮灾害预警方法的重要参数, 它是一个准固有光学特性参数, 是波长 λ和剖面深度z的函数, 除与水体吸收、散射或后向散射有关外, 对归一化的水体体散射函数即散射相函数的角度分布极为敏感。本文基于广角体散射函数测量仪(volume scattering and attenuation meter, VSAM)、吸收衰减系数测量仪ac-9和ac-s以及海洋光学剖面仪Profiler Ⅱ OCI/R-200I和HyperPro Ⅱ在南海海域实测数据, 利用LightGBM、随机森林(random forest, RF)、CatBoost三种高效机器学习方法, 首次构建了基于体散射函数β(ψ)、吸收系数a及对应剖面深度z的漫射衰减系数Kd(650)剖面分布估算模型, 并综合R2、RMSE、MAPE以及估算与实测数据的对比进行模型评价, 结果表明, 三种机器学习模型中, CatBoost模型的R2和RMSE分别为0.8534和0.0472m-1, 均优于RF和LightGBM; CatBoost模型的MAPE为11.0585%, 低于RF模型但略高于LightGBM模型; 通过对比估算和实测结果发现, CatBoost模型估算结果与实测结果最为相近, 是Kd(650)最优估算模型。利用CatBoost模型, 结合实测体散射函数β(ψ)、吸收系数a及其相应剖面深度z, 对南海北部多个站点15m以浅Kd(650)的剖面分布估算表明, 上述站点Kd(650)在5、10、15m三个水层变化范围为0.275~0.7m-1, 5m水层的Kd(650)较为平稳, 10与15m水层Kd(650)跨度较大。本研究方法考虑了多角度体散射函数分布对漫射衰减系数的贡献, 为基于固有光学特性参数估算Kd(z, λ)提供了新方法思路。

关键词: 漫射衰减系数Kd(650), 体散射函数, 吸收系数, 机器学习

Abstract:

Diffuse attenuation coefficient of downwelling irradiance Kd(z, λ) is an important parameter for estimating the profile distribution of underwater light filed and water constituents, and studying the photosynthesis of the phytoplankton and warning method of harmful algae bloom. Kd(z, λ) is a “quasi-inherent” optical property as a function of wavelength   λ and depth z. Not only is it sensitive to absorption and scattering/backscattering coefficient, but also sensitive to the angular distribution of the normalized volume scattering function (i.e., scattering phase function). In this study, based on the volume scattering function [VSF, β(ψ, z)] in seven directions determined with a custom in situ device called VSAM (volume scattering and attenuation meter), the absorption coefficient a(z) determined with the WET Labs ac9 and ac-s, and the downwelling irradiance Ed(z) determined with the Satlantic Profiler Ⅱ OCI/R-200 and HyperPro Ⅱ in the north South China Sea (SCS) with a broad range, using LightGBM, Random Forest (RF) and CatBoost, three machine learning models for estimating the profile distribution of Kd(z, 650) were developed at first, and they were then evaluated by the key indicators including R2、RMSE、MAPE, as well as the comparison between in situ measured Kd(650) and estimated Kd(650). The evaluation indicated that the CatBoost model performed the best with R2 of 0.8534, RMSE of 0.0472 m-1, MAPE of 11.0585%, and the estimated Kd(650) was also closest to the measured Kd(650). Using the established CatBoost model, input inherent optical properties (IOPs) were the absorption coefficient, the volume scattering function (VSF), and their profile depth, the Kd(650) profile distribution among 15 m in the north SCS was estimated. The result shows that Kd(650) varies from 0.275 to 0.7 m-1 at 5, 10 and 15 m underwater. At 5 m, Kd(650) is relatively stable while it varies greatly at 10 and 15 m. The contribution of volume scattering function distribution to Kd(z, λ) is considered in this study, which provides a new idea and method for accurate estimation and acquisition of Kd(z, λ) based on inherent optical properties (IOPs).

Key words: diffuse attenuation coefficient Kd(650), volume scattering function, absorption coefficient, machine learning