[1] |
蒋华, 武尧, 王鑫, 等, 2019. 改进K均值聚类的海洋数据异常检测算法研究[J]. 计算机科学, 46(7): 211-216.
doi: 10.11896/j.issn.1002-137X.2019.07.032
|
|
JIANG HUA, WU YAO, WANG XIN, et al, 2019. Study on ocean data anomaly detection algorithm based on improved K-means clustering[J]. Computer Science, 46(7): 211-216 (in Chinese with English abstract).
doi: 10.11896/j.issn.1002-137X.2019.07.032
|
[2] |
刘玉龙, 王国松, 侯敏, 等, 2021. 基于深度学习的海温观测数据质量控制应用研究[J]. 海洋通报, 40(3): 283-291.
|
|
LIU YULONG, WANG GUOSONG, HOU MIN, et al, 2021. Quality control of sea temperature observation data using deep learning neural networks[J]. Marine Science Bulletin, 40(3): 283-291 (in Chinese with English abstract).
|
[3] |
刘增宏, 李兆钦, 卢少磊, 等, 2021. 全球海洋Argo温盐度剖面散点数据集[J]. 全球变化数据学报(中英文), 5(3): 312-321, 451-460.
|
|
LIU ZENGHONG, LI ZHAOQIN, LU SHAOLEI, et al, 2021. Scattered dataset of global ocean temperature and salinity profiles from the international Argo program[J]. Journal of Global Change Data & Discovery, 5(3): 312-321, 451-460 (in Chinese with English abstract).
|
[4] |
卢少磊, 孙朝辉, 刘增宏, 等, 2016. COPEX和HM2000与APEX型剖面浮标比测试验及资料质量评价[J]. 海洋技术学报, 35(1): 84-92.
|
|
LU SHAOLEI, SUN CHAOHUI, LIU ZENGHONG, et al, 2016. Comparative testing and data quality evaluation for COPEX, HM2000 and APEX profiling buoys[J]. Journal of Ocean Technology, 35(1): 84-92 (in Chinese with English abstract).
|
[5] |
沈锐, 王德亮, 刘增宏, 等, 2019. HM2000型剖面浮标的主要特征及其应用[J]. 数字海洋与水下攻防, 2(2): 20-27.
|
|
SHEN RUI, WANG DELIANG, LIU ZENGHONG, et al, 2019. Main characteristics and applications of HM2000 profile float[J]. Digital Ocean & Underwater Warfare, 2(2): 20-27 (in Chinese with English abstract).
|
[6] |
石洪波, 陈雨文, 陈鑫, 2019. SMOTE过采样及其改进算法研究综述[J]. 智能系统学报, 14(6): 1073-1083.
|
|
SHI HONGBO, CHEN YUWEN, CHEN XIN, 2019. Summary of research on SMOTE oversampling and its improved algorithms[J]. CAAI Transactions on Intelligent Systems, 14(6): 1073-1083 (in Chinese with English abstract).
|
[7] |
谭哲韬, 张斌, 吴晓芬, 等, 2022. 海洋观测数据质量控制技术研究现状及展望[J]. 中国科学: 地球科学, 52(3): 418-437.
|
|
TAN ZHETAO, ZHANG BIN, WU XIAOFEN, et al, 2022. Quality control for ocean observations: from present to future[J]. Science China Earth Sciences, 65(2): 215-233 (in Chinese with English abstract).
|
[8] |
王东晓, 邱春华, 舒业强, 等, 2022. 南海环流多尺度动力过程演变特征与机制研究进展[J]. 海洋科学进展, 40(4): 605-623.
|
|
WANG DONGXIAO, QIU CHUNHUA, SHU YEQIANG, et al, 2022. Progress in the dynamic process and mechanisms of multi-scale currents in the South China Sea[J]. Advances in Marine Science, 40(4): 605-623 (in Chinese with English abstract).
|
[9] |
许自舟, 宋德瑞, 赵辉, 等, 2009. 海洋环境监测数据质量计算机控制方法研究[J]. 海洋环境科学, 28(3): 320-323.
|
|
XU ZIZHOU, SONG DERUI, ZHAO HUI, et al, 2009. Technique study on data quality control in sea environmental monitoring by computer[J]. Marine Environmental Science, 28(3): 320-323 (in Chinese with English abstract).
|
[10] |
杨剑锋, 乔佩蕊, 李永梅, 等, 2019. 机器学习分类问题及算法研究综述[J]. 统计与决策, 35(6): 36-40.
|
|
YANG JIANFENG, QIAO PEIRUI, LI YONGMEI, et al, 2019. A review of machine-learning classification and algorithms[J]. Statistics & Decision, 35(6): 36-40 (in Chinese with English abstract).
|
[11] |
张桐, 2018. 基于Argo数据的海洋温度预测方法研究[D]. 长春: 吉林大学: 1-2.
|
|
ZHANG TONG, 2018. Research of ocean temperature prediction based on Argo data[D]. Changchun: Jilin University: 1-2 (in Chinese with English abstract).
|
[12] |
张雪薇, 韩震, 2022. Argo温度数据的ConvGRU模型预测分析[J]. 海洋环境科学, 41(4): 628-635.
|
|
ZHANG XUEWEI, HAN ZHEN, 2022. Prediction and analysis of Argo temperature data by ConvGRU model[J]. Marine Environmental Science, 41(4): 628-635 (in Chinese with English abstract).
|
[13] |
CASTELÃO G P, 2021. A machine learning approach to quality control oceanographic data[J]. Computers & Geosciences, 155: 104803.
|
[14] |
CUMMINGS J A, 2011. Ocean data quality control[M]// SCHILLER A, BRASSINGTON G B. Operational oceanography in the 21st Century. Dordrecht: Springer: 91-121.
|
[15] |
DOBBIN K K, SIMON R M, 2011. Optimally splitting cases for training and testing high dimensional classifiers[J]. BMC Medical Genomics, 4(1): 31.
|
[16] |
FAWCETT T, 2006. An introduction to ROC analysis[J]. Pattern Recognition Letters, 27(8): 861-874.
|
[17] |
FOSIĆ I, ŽAGAR D, GRGIĆ K, et al, 2023. Anomaly detection in NetFlow network traffic using supervised machine learning algorithms[J]. Journal of Industrial Information Integration, 33: 100466.
|
[18] |
GOOD S A, MARTIN M J, RAYNER N A, 2013. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates[J]. Journal of Geophysical Research: Oceans, 118(12): 6704-6716.
|
[19] |
GULLI A, PAL S, 2017. Deep learning with Keras[M]. Birmingham: Packt Publishing: 1-2.
|
[20] |
HAN HUI, WANG WENYUAN, MAO BINGHUAN, 2015. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning[C]// International conference on intelligent computing. Hefei, China: Springer: 878-887.
|
[21] |
INGLEBY B, HUDDLESTON M, 2007. Quality control of ocean temperature and salinity profiles-Historical and real-time data[J]. Journal of Marine Systems, 65(1-4): 158-175.
|
[22] |
Intergovernmental Oceanographic Commission, 2010. GTSPP real-time quality control manual. Revised edition 2010[Z]. Paris: United Nations Educational, Scientific and Cultural Organization.
|
[23] |
KAMIKAWAJI Y, MATSUYAMA H, FUKUI K I, et al, 2016. Decision tree-based feature function design in conditional random field applied to error detection of ocean observation data[C]// 2016 IEEE symposium series on computational intelligence (SSCI). Athens, Greece: IEEE: 1-8.
|
[24] |
LIU ZHENGHONG, XING XIAOGANG, CHEN ZHAOHUI, et al, 2023. Twenty years of ocean observations with China Argo[J]. Acta Oceanologica Sinica, 42(2): 1-16.
|
[25] |
MIERUCH S, DEMIREL S, SIMONCELLI S, et al, 2021. SalaciaML: A deep learning approach for supporting ocean data quality control[J]. Frontiers in Marine Science, 8: 611742.
|
[26] |
NGUYEN Q H, LY H B, HO L S, et al, 2021. Influence of data splitting on performance of machine learning models in prediction of shear strength of soil[J]. Mathematical Problems in Engineering, 2021: 4832864.
|
[27] |
ONO S, MATSUYAMA H, FUKUI K I, et al, 2015. Error detection of oceanic observation data using sequential labeling[C]// 2015 IEEE international conference on data science and advanced analytics (DSAA). Paris, France: IEEE: 1-8.
|
[28] |
PAWLOWICZ R, 2013. Key physical variables in the ocean: temperature, salinity, and density[J]. Nature Education Knowledge, 4(4): 13.
|
[29] |
PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al, 2011. Scikit-learn: Machine learning in Python[J]. The Journal of Machine Learning Research, 12: 2825-2830.
|
[30] |
RASCHKA S, MIRJALILI V, 2019. Python machine learning:Machine learning and deep learning with Python, scikit-learn, and TensorFlow 2[M]. 3rd ed. Birmingham: Packt Publishing.
|
[31] |
TAN ZHETAO, CHENG LIJING, GOURETSKI V, et al, 2023. A new automatic quality control system for ocean profile observations and impact on ocean warming estimate[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 194: 103961.
|
[32] |
UDAYA BHASKAR T V S, RAO E P R, SHESU R V, et al, 2012. A note on three way quality control of Argo temperature and salinity profiles - A semi-automated approach at INCOIS[J]. International Journal of Earth Sciences and Engineering, 5(6): 1510-1514.
|
[33] |
UDAYA BHASKAR T V S, SHESU R V, BOYER T P, et al, 2017. Quality control of oceanographic in situ data from Argo floats using climatological convex hulls[J]. MethodsX, 4: 469-479.
|
[34] |
YU FANGJIE, ZHANG XUAN, CHEN XIN, et al, 2020. Altimetry-derived ocean thermal structure reconstruction for the Bay of Bengal cyclone season[J]. Ocean Dynamics, 70(11): 1449-1459.
|
[35] |
ZHANG QI, QIAN CHENYAN, DONG CHANGMING, 2020. A machine learning approach to quality-control Argo temperature data[J]. Atmospheric and Oceanic Science Letters, 16(4): 100292.
|