国际大洋发现计划IODP367/368/368X航次推动南海国际化海洋科考成果
孙珍(1971—), 女, 辽宁省大石桥市人, 研究员, 博士生导师, 研究方向为海洋地质构造与模拟。email: |
Copy editor: 林强
收稿日期: 2020-05-25
要求修回日期: 2020-06-24
网络出版日期: 2020-12-03
基金资助
广东省自然科学基金团队项目(2017A030312002)
卢嘉锡国际团队项目(GJTD-2018-13)
南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0104)
南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0205)
南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(2019BT02H594)
版权
International collaboration of ocean exploration in the South China Sea enhanced by International Ocean Discovery Program Expeditions 367/368/368x
Copy editor: LIN Qiang
Received date: 2020-05-25
Request revised date: 2020-06-24
Online published: 2020-12-03
Supported by
Guangdong NSF research team project(2017A030312002)
K.C. Wong Education Foundation(GJTD-2018-13)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0104)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0205)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(2019BT02H594)
Copyright
在科技部的支持下, 中国在1998年加入国际大洋钻探计划(International Ocean Drilling Program, IODP), 迄今为止已组织了4+1个航次的大洋钻探。通过IODP-CPP (complimentary proposal project)项目, 我国科学家主导完成了349、367/368/368X多个钻探航次, 实现了对南海张裂—破裂—扩张发育历史的钻探和取样, 对南海生命史的研究起到了重要的约束作用。本文系统总结了367/368/368X航次在南海北部洋陆过渡带钻探取得的最新成果, 证实南海北部陆缘不同于伊比利亚型陆缘, 具有陆洋转换迅速的特点, 洋陆过渡带地壳内有一定程度的同张裂岩浆侵入和底侵。钻探航次在科学上取得了巨大的成功, 钻探结果提升了对陆洋转换过程和机制的认识。航次期间, 广泛而深入的国际交流与合作极大提升了中国科学家对钻探平台管理、国际大团队合作管理以及人才培养和科普互动等各方面的认识, 加快了中国海洋科考国际化的步伐。
孙珍 , 林间 , 汪品先 , 翦知湣 , 李春峰 . 国际大洋发现计划IODP367/368/368X航次推动南海国际化海洋科考成果[J]. 热带海洋学报, 2020 , 39(6) : 18 -29 . DOI: 10.11978/YG2020002
With the support of the Ministry of Science and Technology, China joined the International Ocean Drilling Program (IODP) in 1998. IODP-China has so far led the organization of 4+1 expeditions. Through the complimentary proposal project (CPP), Chinese scientists led the drilling expeditions of 349/367/368/368x to investigate the full history of rifting- breakup-spreading of the South China Sea (SCS) basin. In this paper, we summarize the latest achievements of IODP Expeditions 367/368/368x, which revealed surprising evidence for abundant magma intrusion and underplating at the distal northern margin of the SCS as well as rapid continent-ocean transition. Extensive in-depth exchanges and cooperation with the international scientific community have greatly enhanced the operation of ocean drilling platforms, management of the IODP organization, scientific and technical staff training, and public outreach. These experiences will further enhance international cooperation of China's oceanographic research.
图1 南海主要构造特征与ODP/IODP站位分布情况底图基于中国地质调查局广州海洋地质调查局编制出版的南海晕渲地形图, 编审号为ISBN 978-7-5485-1256-1, JS(2015)02-107, 底图无修改。其中左图中的红框显示的是右侧图的范围, 图中黑色实线为多道地震剖面的位置, 地震剖面在 Fig. 1 The main structural framework of the South China Sea and the distribution of ODP/IODP drill sites. The red square in the left panel is the area displayed in the right panel. The black lines in the right panel indicate the sections of the seismic profiles displayed in |
表1 IODP 878号建议书评审历史Tab. 1 Review history of IODP878 proposal |
时间 | 建议书提交情况 | 评审情况 | |
---|---|---|---|
2013年10月 | 提交初始建议书838-pre | 2013年11月, 科学与站位评估委员会(SEP)评审, 鼓励提交完整建议 | |
2014年4月 | 提交完整建议书838-full | 2014年5月, 科学与站位评估委员会(SEP)评审, 并建议修改 | |
2014年10月 | 提交修改后建议书838-full2 | 2014年11月, SEP评审, 建议书被拒绝, 并鼓励修改后重新提交 | |
2015年4月 | 通过与中海油合作, 补充采集新地震资料, 提交修改后建议书, 重新编号878-CPP | 2015年5月, SEP通过评审, 并建议提交环境保护与安全委员会(EPSP)进行站位安全和环境保护评估 | |
2015年9月 | 提交航次计划和站位建议至EPSP | EPSP通过部分站位评估, 但建议需补充更多备选站位后再次评估 | |
2016年3月 | 增加备选站位设计, 再次提交全部站位资料至EPSP | 2016年7月, EPSP对878-CPP建议书和站位资料进行再次评估, 通过钻探建议和方案, 送JRSF, 正式进入航次安排; | |
2016年10月 | 确定为IODP367/368航次, 执行时间2017年2—6月 |
图2 南海IODP367、368、368X航次全部钻探站位的柱状图(Sun et al, 2018a; Jian et al, 2018a)Fig. 2 The stratigraphic column of all drill sites of IODP expeditions 367, 368, and 368X (Sun et al, 2018a; Jian et al, 2018a) |
表2 IODP 367/368/368X航次各站位钻探结果信息表Tab. 2 Coring information at all the drill sites of IODP 367/368/368X |
钻孔 | 经度 | 纬度 | 水深/m | 进尺/m | 取芯/m | 取芯率/% | 位置及科学目标 |
---|---|---|---|---|---|---|---|
U1499A | 115°51'35"E | 18°24'34"N | 3760.2 | 659.2 | 417.05 | 63.27 | 洋陆过渡带, 检验下地壳或地幔剥露 |
U1499B | 115°51'36"E | 18°24'34"N | 3758.1 | 1081.8 | 150.64 | 35.3 | |
U1500A | 116°13'11"E | 18°18'17"N | 3801.7 | 854.6 | 93.55 | 28.37 | 早期洋壳, 检验是否下地壳或地幔剥露 |
U1500B | 116°13'12"E | 18°18'16"N | 3801.6 | 1529 | 278.79 | 40.82 | |
U1501C | 115°45'57"E | 18°53'06"N | 2845.81 | 461.9 | 444.77 | 96.29 | 远端带, 揭示完整张破裂层序 |
U1501D | 115°45'56"E | 18°53'06"N | 2845.82 | 644.3 | 78.77 | 37.37 | |
U1502A | 116°13'50"E | 18°27'52"N | 3763.72 | 758.2 | 176.81 | 46.14 | 洋陆过渡带, 检验是否有下地壳或地幔剥露 |
U1502B | 116°13'50"E | 18°27'53"N | 3763.58 | 920.8 | 131.57 | 68.14 | |
U1503A | 116°18'51"E | 18°8'38"N | 3867.71 | 1710.1 | 175.73 | 10.29 | 成熟洋盆, 检验洋盆发育时间和成分 |
U1504A | 116°14'32"E | 18°50'55"N | 2816.57 | 165.5 | 52.93 | 31.98 | 外缘隆起, 检验基底组成 |
U1504B | 116°14'36"E | 18°50'49"N | 2842.97 | 200 | 21.48 | 19.21 | |
U1505C | 115°51'33"E | 18°55'03"N | 2917.37 | 480.2 | 480.15 | 99.99 | 远端带盆地, 检验渐新世以来环境变化 |
U1505D | 115°51'33"E | 18°55'03"N | 2917 | 184.5 | 191.43 | 103.76 | |
合计 | 9650.1 | 2693.67 |
图3 穿过及投影了全部站位的地震剖面解释图测线位置见 Fig. 3 Seismic profiles across or projected with all the drill sites. The locations of the profiles are shown in the right panel of |
图5 南海陆缘减薄破裂中岩浆活动受俯冲作用影响模式图据Sun等(2019)、Shi等(2012)修改. a. 晚中生代, 在南海张裂前, 华南陆缘为主动大陆边缘, 在约60—50Ma前后经历了扩张脊的俯冲(Seton et al, 2015), 扩张脊俯冲和断离可能造成南海北部大规模火成岩活动及地表抬升; b. 新生代早期, 南海进入陆缘张裂阶段, 根据南海北部弧火山岩停止活动时间在~50Ma(Li et al, 2018)以及南部陆缘与婆罗洲北缘出现增生楔的年代约45Ma(Madon et al, 2013)推测, 此时俯冲板片已开始向南俯冲, 并反向拖曳驱动南海北侧陆缘张裂直至破裂; c. 板片断落扰动的富集地幔柱到达地表, 产生新一期岩浆喷发和地表抬升 Fig. 5 Schematic diagram showing that magmatism of the South China Sea during rifting and spreading might be affected strongly by subduction (modified slightly after Sun et al, 2019; Shi et al, 2012). a) During late Mesozoic, the South China Sea is under subduction. Around 60-50 Ma, the ridge subducted toward Eurasia (Seton et al, 2015). The ridge subduction and slab break-away for the front block may have caused large amount of magmatism and ground uplift. b) During early Cenozoic, the South China Sea transformed into extensional margin. According to the cessation of volcanic magmatism in the northern margin around 50 Ma (Li et al, 2018), and accretionary wedge development between the southern margin and the northern Borneo at about 45 Ma (Madon et al, 2013), the slab had started to subduct toward south and caused rifting or even spreading. c) The fertile mantle stimulated by the slab break-off arrive at the seafloor and caused another stage of magmatism and ground uplift |
[1] |
郭令智, 施央申, 马瑞士, 1983. 西太平洋中、新生代活动大陆边缘和岛弧构造的形成及演化[J]. 地质学报, 57(1):11-21.
|
[2] |
翦知湣, 2018. 进军深海科学前沿——我国参与大洋钻探的进展[J]. 科学通报, 63(36):3877-3882.
|
[3] |
林间, 李家彪, 徐义刚, 等, 2019. 南海大洋钻探及海洋地质与地球物理前沿研究新突破[J]. 海洋学报, 41(10):125-140.
|
[4] |
任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 22(1):102-114.
|
[5] |
孙珍, 钟志洪, 周蒂, 等, 2006. 南海的发育机制研究——相似模拟证据[J]. 中国科学 D辑: 地球科学, 36(9):797-810.
|
[6] |
汪品先, 2006. 低纬过程的轨道驱动[J]. 第四纪研究, 26(5):694-701.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
/
〈 | 〉 |