珠江口沉积物有机质特征、来源及其对碳存储的意义
商博文(1996—), 湖南省宁乡市人, 男, 硕士研究生, 主要从事海洋环境生态学研究。 |
Copy editor: 林强
收稿日期: 2021-10-25
修回日期: 2021-12-16
网络出版日期: 2021-12-20
基金资助
国家自然科学基金项目(41890852)
国家自然科学基金项目(U1901221)
南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0405)
广州市科技计划项目(202102021230)
Characteristics and sources of organic matter in sediments of the Pearl River Estuary: Carbon storage implications
Copy editor: LIN Qiang
Received date: 2021-10-25
Revised date: 2021-12-16
Online published: 2021-12-20
Supported by
National Natural Science Foundation of China(41890852)
National Natural Science Foundation of China(U1901221)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(GML2019ZD0405)
Guangzhou Science and Technology Program(202102021230)
河口沉积物作为承接陆海过程的重要载体, 是有机质赋存的主要形式之一。本文研究了珠江口沉积物总有机碳、总氮含量和沉积物可溶性有机物三维荧光特征, 以及其在口内区、混合区和口外区空间差异和影响因素, 并结合碳稳定同位素(δ13C)估算了珠江口各区域沉积物中不同来源有机质的贡献。结果显示: (1)沉积物总有机碳和总氮含量空间变化相似, 口内区和混合区域沉积有机质含量显著高于口外区; 主成分分析发现, 口内区沉积有机质含量主要受径流输入的影响, 口外区主要受Fe3+的影响; (2)MixSIAR稳定同位素混合模型结果显示, 口内区和混合区沉积有机质以陆源为主, 口外区则以海源为主; (3)珠江口沉积物新生有机质较多, 可快速被利用, 总体上不利于有机碳存储; 而陆源输入导致口内区和混合区沉积有机质腐殖化程度较高, 有机碳可存储性相对较高, 口外受海源有机质和铁氧化物—有机质复合体的影响, 有机碳可存储性相对较低。本研究可为深入认知河口区沉积有机质的生物地球化学过程及有机碳存储提供参考。
商博文 , 吴云超 , 江志坚 , 刘松林 , 黄小平 . 珠江口沉积物有机质特征、来源及其对碳存储的意义[J]. 热带海洋学报, 2022 , 41(3) : 16 -28 . DOI: 10.11978/2021142
Estuarine sediment, as an important carrier of terrestrial and marine ecosystems, is one of the main forms of organic matter occurrence. In this study, we analyzed total organic carbon (TOC) concentration, total nitrogen (TN) concentration, soluble organic matter excitation emission matrix spectroscopy (EEMs), spatial differences and influencing factors in different areas. Carbon stable isotope (δ13C) was applied to estimate the contribution of sediment organic matter (SOM) in different regions of the Pearl River Estuary (PRE). The results are as follows. (1) Spatial variations of TOC and TN concentrations are similar. The concentrations of SOM in the inner estuary and mixed areas are significantly higher than those in the estuary mouth. Principal component analysis results show that SOM concentrations in the inner estuary and the mixed area are mainly affected by river flow input, and those in the estuary mouth, by ferric iron. (2) MixSIAR results show that SOM in the inner estuary and the mixed zone is still mainly from terrestrial sources, and that in the estuary mouth is primarily from marine sources. (3) Newly produced organic matter in the sediments, which can be quickly utilized, is highly enriched in the PRE. Terrestrial input induced the higher humification degree of SOM in the inner estuary and mixed areas, which is conducive to organic carbon storage processes. In contrast, low storage capability was implicated in the estuary mouth, due to the influence of marine sources and iron oxide-organic matter complex. This makes it unfavorable for the storage of organic carbon in the PRE. This study provides a supplementary reference for further understanding the biogeochemical process of SOM and carbon storage in estuaries.
表1 珠江口沉积物和底层水的环境参数Tab. 1 Environmental parameters of sediment and bottom water in the PRE |
区域 | 站位 | 深度/m | Mz/Φ | 粉砂/% | 黏土/% | Eh/mV | 盐度/‰ | DO/(mg·L-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
夏季 | 冬季 | 夏季 | 冬季 | 夏季 | 冬季 | 夏季 | 冬季 | 夏季 | 冬季 | 夏季 | 冬季 | 夏季 | 冬季 | ||
口内区 | S1 | 14.0 | 7.1 | 62.0 | 29.7 | -167 | 20.4 | 6.92 | |||||||
S2 | 12.0 | 12.0 | 7.5 | 7.2 | 63.5 | 65.5 | 35.6 | 32.3 | -230 | -181 | 15.8 | 21.1 | 4.86 | 7.03 | |
S3 | 7.8 | 5.7 | 7.3 | 6.7 | 67.3 | 63.7 | 32.1 | 28.2 | -233 | -109 | 8.7 | 24.4 | 7.15 | 7.52 | |
S6 | 4.0 | 4.4 | 7.2 | 7.5 | 64.9 | 63.0 | 32.4 | 36.4 | -203 | -158 | 9.8 | 19.8 | 4.10 | 8.19 | |
平均 | 9.2±4.1 | 7.2±0.3 | 64.0±1.8 | 32.0±2.9 | -188±44 | 17.6±6.0 | 6.54±1.48 | ||||||||
混合区 | S4 | 4.5 | 14.4 | 6.8 | 7.4 | 51.5 | 64.7 | 33.1 | 34.4 | -155 | -181 | 19.9 | 30.3 | 7.90 | 7.62 |
S5 | 7.0 | 9.0 | 7.4 | 6.9 | 57.0 | 59.4 | 37.8 | 31.3 | -126 | -165 | 16.2 | 28.2 | 3.80 | 7.59 | |
S7 | 6.6 | 6.9 | 5.8 | 6.7 | 45.7 | 64.2 | 22.0 | 28.1 | -155 | -188 | 26.8 | 30.9 | 5.70 | 7.81 | |
S8 | 6.9 | 6.9 | 6.0 | 6.4 | 48.0 | 58.1 | 24.7 | 26.5 | -158 | -142 | 29.3 | 31.8 | 7.29 | 7.68 | |
S9 | 5.4 | 5.5 | 7.1 | 7.2 | 65.4 | 63.6 | 31.7 | 33.6 | -170 | -140 | 16.2 | 26.6 | 5.30 | 7.93 | |
S10 | 13.5 | 15.0 | 6.4 | 6.2 | 61.6 | 60.3 | 24.9 | 23.8 | -240 | -145 | 32.2 | 32.1 | 5.84 | 7.28 | |
S11 | 7.4 | 6.5 | 6.8 | 7.0 | 66.0 | 67.1 | 27.6 | 29.7 | -195 | -170 | 30.4 | 26.7 | 5.70 | 8.07 | |
S12 | 8.4 | 6.3 | 6.7 | 6.4 | 63.8 | 67.5 | 27.4 | 23.4 | -190 | -131 | 31.5 | 26.9 | 6.80 | 7.45 | |
平均 | 8.1±3.2 | 6.7±0.5 | 60.2±6.7 | 28.7±4.6 | -165±29 | 27.3±5.3 | 6.86±1.23 | ||||||||
口外区 | S13 | 23.0 | 30.0 | 5.8 | 5.5 | 45.7 | 41.5 | 24.0 | 22.0 | -188 | -145 | 33.9 | 32.4 | 4.40 | 7.25 |
S14 | 27.0 | 24.6 | 6.9 | 7.0 | 68.2 | 67.7 | 27.4 | 27.6 | -130 | -172 | 34.0 | 32.3 | 5.50 | 7.30 | |
S15 | 29.4 | 23.5 | 6.3 | 5.9 | 59.7 | 54.2 | 23.6 | 22.5 | -121 | -125 | 34.0 | 32.2 | 5.60 | 7.24 | |
S16 | 29.6 | 29.0 | 5.9 | 4.9 | 55.7 | 37.4 | 23.0 | 17.0 | -177 | -132 | 33.9 | 32.4 | 5.70 | 7.06 | |
S17 | 32.5 | 33.0 | 5.1 | 5.6 | 39.3 | 46.3 | 18.2 | 22.0 | -134 | -119 | 34.0 | 33.4 | 5.80 | 6.90 | |
S18 | 38.0 | 40.0 | 6.7 | 7.0 | 68.1 | 69.4 | 25.2 | 28.4 | -144 | -107 | 34.3 | 33.4 | 5.60 | 6.90 | |
S19 | 41.8 | 41.0 | 6.2 | 5.8 | 58.7 | 56.5 | 22.9 | 20.9 | -116 | -121 | 34.4 | 33.6 | 5.98 | 6.76 | |
S20 | 37.0 | 33.0 | 5.4 | 4.5 | 50.1 | 35.5 | 21.0 | 15.2 | -180 | -179 | 34.4 | 33.9 | 6.22 | 6.77 | |
平均 | 32.1±6.1 | 5.9±0.7 | 53.4±11.6 | 22.6±8.7 | -143±27 | 33.5±0.8 | 5.86±0.84 |
表2 珠江口沉积物主要性质Tab. 2 Main properties of sediment in the PRE |
图4 珠江口沉积物可溶性有机质荧光组分分布特征Fig. 4 Spatial distributions of SDOM fluorescence components in the PRE |
表3 珠江口沉积物可溶性有机质荧光强度和荧光参数Tab. 3 Fluorescence intensity and spectral parameters of SDOM in the PRE |
季节 | 口内区 | 混合区 | 口外区 | ||
---|---|---|---|---|---|
荧光强度 | 夏季 | A峰 | 135.9±35.6a | 98.3±14.8b | 73.7±17.7c |
C峰 | 139.9±21.9a | 86.3±12.4b | 68.9±16.2c | ||
M峰 | 234.7±25.7a | 152.9±21.5b | 128.6±26.9b | ||
B峰 | 14.1±2.6 | 11.7±1.8 | 12.2±2.8 | ||
T峰 | 49.2±4.7a | 37.5±3.3b | 34.5±8.4b | ||
冬季 | A峰 | 113.2±20.5a | 80.0±19.7b | 64.3±26.4b | |
C峰 | 90.2±15.9a | 60.0±16.7b | 50.6±21.2b | ||
M峰 | 155.8±15.3a | 104.5±27.9b | 94.0±35.8b | ||
B峰 | 25.6±14.1 | 21.4±8.9 | 14.6±4.0 | ||
T峰 | 49.3±14.6 | 39.9±7.6 | 37.5±11.1 | ||
荧光参数 | 夏季 | FI | 2.14±0.07a | 2.24±0.07b | 2.40±0.07c |
β:α | 0.79±0.02a | 0.87±0.04b | 1.15±0.04c | ||
BIX | 0.84±0.11a | 0.94±0.05b | 1.29±0.05c | ||
HIX | 0.66±0.05a | 0.62±0.03ab | 0.58±0.07b | ||
冬季 | FI | 2.22±0.08a | 2.30±0.10ab | 2.39±0.08b | |
β:α | 0.86±0.05a | 0.87±0.06a | 1.03±0.10b | ||
BIX | 0.93±0.07a | 0.94±0.07a | 1.13±0.11b | ||
HIX | 0.60±0.07 | 0.54±0.05 | 0.52±0.06 |
注: 上标不同字母表示差异性显著(P < 0.05) |
表4 珠江口沉积物Fe3+、可溶性有机质荧光强度和TOC相关性Tab. 4 Correlations of sediment Fe3+ with SDOM fluorescence intensity and TOC in the PRE |
季节 | Fe3+ | A峰 | C峰 | M峰 | B峰 | T峰 | TOC | |
---|---|---|---|---|---|---|---|---|
夏季 | Fe3+ | 1 | ||||||
A峰 | -0.505* | 1 | ||||||
C峰 | -0.471* | -0.987** | 1 | |||||
M峰 | -0.460* | 0.973** | 0.996** | 1 | ||||
B峰 | -0.012 | 0.119 | 0.142 | 0.147 | 1 | |||
T峰 | -0.361 | 0.831** | 0.850** | 0.864** | 0.459* | 1 | ||
TOC | -0.224 | 0.701** | 0.687** | 0.685** | 0.128 | 0.627** | 1 | |
冬季 | Fe3+ | 1 | ||||||
A峰 | -0.475* | 1 | ||||||
C峰 | -0.489* | 0.986** | 1 | |||||
M峰 | -0.431 | 0.970** | 0.974** | 1 | ||||
B峰 | -0.593** | 0.400 | 0.427 | 0.465* | 1 | |||
T峰 | -0.578** | 0.715** | 0.720** | 0.760** | 0.743** | 1 | ||
TOC | -0.734** | 0.616** | 0.602** | 0.539* | 0.450* | 0.505* | 1 |
注: *指在0.05级别(双尾)相关性显著; **指在0.01级别(双尾)相关性显著 |
[1] |
程远月, 郭卫东, 夏恩琴, 等, 2008. 厦门湾沉积物间隙水中CDOM的荧光特性及其分布研究[J]. 台湾海峡, 27(1): 8-14.
|
[2] |
郭卫东, 王超, 徐静, 等, 2018. 海洋有机质的光谱分析方法评述[J]. 海洋通报, 37(6): 601-614.
|
[3] |
郭卫东, 王超, 李炎, 等, 2020. 水环境中溶解有机质的光谱表征: 从流域到深海[J]. 地球科学进展, 35(9): 933-947.
|
[4] |
韩永强, 夏嘉, 谭靖千, 等, 2020. 环雷州半岛近海表层沉积物有机碳分布及其控制因素分析[J]. 海洋科学, 44(3): 93-103.
|
[5] |
贾淇文, 章桂芳, 唐世林, 等, 2021. 2013-2018年珠江河口伶仃洋水域悬浮泥沙季节性变化分析[J]. 中山大学学报(自然科学版), 60(5): 59-71.
|
[6] |
江四义, 郑兆勇, 2008. 从珠江口沉积物粒度参数特征分析泥沙来源及其运移趋势[J]. 中山大学学报(自然科学版), 47(S1): 126-129.
|
[7] |
连忠廉, 江志坚, 黄小平, 等, 2019. 珠江口表层沉积物有机碳不同浸提组分的空间分布特征[J]. 海洋环境科学, 38(3): 391-398.
|
[8] |
刘广州, 胡嘉镗, 李适宇, 2020. 珠江口夏季海陆源有机碳的模拟研究--分布特征、贡献比重及其迁移转化过程[J]. 中国环境科学, 40(1): 162-173.
|
[9] |
唐诚, 赵艳, 张华, 等, 2013. 珠江口近30年海底表层沉积物粒度分布及其环境变化[J]. 海洋科学, 37(5): 61-70.
|
[10] |
陶婧, 马伟伟, 李文君, 等, 2017. 南黄海沉积物中活性铁氧化物对有机碳的保存作用[J]. 海洋学报, 39(8): 16-24.
|
[11] |
王华新, 线薇微, 2011. 长江口表层沉积物有机碳分布及其影响因素[J]. 海洋科学, 35(5): 24-31.
|
[12] |
韦海伦, 蔡进功, 王国力, 等, 2018. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 33(10): 1024-1033.
|
[13] |
吴金浩, 刘桂英, 王年斌, 等, 2012. 辽东湾北部海域表层沉积物氧化还原电位及其主要影响因素[J]. 沉积学报, 30(2): 333-339.
|
[14] |
徐阳, 李朋辉, 张传伦, 等, 2021. 珠江口沉积物溶解性有机质来源及光谱特征的空间变化[J]. 中国科学 D辑: 地球科学, 51(1): 63-72.
|
[15] |
张凌, 陈繁荣, 殷克东, 等, 2010. 珠江口及近海表层沉积有机质的特征和来源[J]. 热带海洋学报, 29(1): 98-103.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
/
〈 | 〉 |