热带海洋学报 ›› 2022, Vol. 41 ›› Issue (3): 16-28.doi: 10.11978/2021142CSTR: 32234.14.2021142
商博文1,2,3, 吴云超1,2, 江志坚1,2,3, 刘松林1,2, 黄小平1,2,3()
收稿日期:
2021-10-25
修回日期:
2021-12-16
发布日期:
2021-12-20
通讯作者:
黄小平
作者简介:
商博文(1996—), 湖南省宁乡市人, 男, 硕士研究生, 主要从事海洋环境生态学研究。
基金资助:
SHANG Bowen1,2,3, WU Yunchao1,2, JIANG Zhijian1,2,3, LIU Songlin1,2, HUANG Xiaoping1,2,3()
Received:
2021-10-25
Revised:
2021-12-16
Published:
2021-12-20
Contact:
HUANG Xiaoping
Supported by:
摘要:
河口沉积物作为承接陆海过程的重要载体, 是有机质赋存的主要形式之一。本文研究了珠江口沉积物总有机碳、总氮含量和沉积物可溶性有机物三维荧光特征, 以及其在口内区、混合区和口外区空间差异和影响因素, 并结合碳稳定同位素(δ13C)估算了珠江口各区域沉积物中不同来源有机质的贡献。结果显示: (1)沉积物总有机碳和总氮含量空间变化相似, 口内区和混合区域沉积有机质含量显著高于口外区; 主成分分析发现, 口内区沉积有机质含量主要受径流输入的影响, 口外区主要受Fe3+的影响; (2)MixSIAR稳定同位素混合模型结果显示, 口内区和混合区沉积有机质以陆源为主, 口外区则以海源为主; (3)珠江口沉积物新生有机质较多, 可快速被利用, 总体上不利于有机碳存储; 而陆源输入导致口内区和混合区沉积有机质腐殖化程度较高, 有机碳可存储性相对较高, 口外受海源有机质和铁氧化物—有机质复合体的影响, 有机碳可存储性相对较低。本研究可为深入认知河口区沉积有机质的生物地球化学过程及有机碳存储提供参考。
中图分类号:
商博文, 吴云超, 江志坚, 刘松林, 黄小平. 珠江口沉积物有机质特征、来源及其对碳存储的意义[J]. 热带海洋学报, 2022, 41(3): 16-28.
SHANG Bowen, WU Yunchao, JIANG Zhijian, LIU Songlin, HUANG Xiaoping. Characteristics and sources of organic matter in sediments of the Pearl River Estuary: Carbon storage implications[J]. Journal of Tropical Oceanography, 2022, 41(3): 16-28.
表1
珠江口沉积物和底层水的环境参数"
区域 | 站位 | 深度/m | Mz/Φ | 粉砂/% | 黏土/% | Eh/mV | 盐度/‰ | DO/(mg·L-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
夏季 | 冬季 | 夏季 | 冬季 | 夏季 | 冬季 | 夏季 | 冬季 | 夏季 | 冬季 | 夏季 | 冬季 | 夏季 | 冬季 | ||
口内区 | S1 | 14.0 | 7.1 | 62.0 | 29.7 | -167 | 20.4 | 6.92 | |||||||
S2 | 12.0 | 12.0 | 7.5 | 7.2 | 63.5 | 65.5 | 35.6 | 32.3 | -230 | -181 | 15.8 | 21.1 | 4.86 | 7.03 | |
S3 | 7.8 | 5.7 | 7.3 | 6.7 | 67.3 | 63.7 | 32.1 | 28.2 | -233 | -109 | 8.7 | 24.4 | 7.15 | 7.52 | |
S6 | 4.0 | 4.4 | 7.2 | 7.5 | 64.9 | 63.0 | 32.4 | 36.4 | -203 | -158 | 9.8 | 19.8 | 4.10 | 8.19 | |
平均 | 9.2±4.1 | 7.2±0.3 | 64.0±1.8 | 32.0±2.9 | -188±44 | 17.6±6.0 | 6.54±1.48 | ||||||||
混合区 | S4 | 4.5 | 14.4 | 6.8 | 7.4 | 51.5 | 64.7 | 33.1 | 34.4 | -155 | -181 | 19.9 | 30.3 | 7.90 | 7.62 |
S5 | 7.0 | 9.0 | 7.4 | 6.9 | 57.0 | 59.4 | 37.8 | 31.3 | -126 | -165 | 16.2 | 28.2 | 3.80 | 7.59 | |
S7 | 6.6 | 6.9 | 5.8 | 6.7 | 45.7 | 64.2 | 22.0 | 28.1 | -155 | -188 | 26.8 | 30.9 | 5.70 | 7.81 | |
S8 | 6.9 | 6.9 | 6.0 | 6.4 | 48.0 | 58.1 | 24.7 | 26.5 | -158 | -142 | 29.3 | 31.8 | 7.29 | 7.68 | |
S9 | 5.4 | 5.5 | 7.1 | 7.2 | 65.4 | 63.6 | 31.7 | 33.6 | -170 | -140 | 16.2 | 26.6 | 5.30 | 7.93 | |
S10 | 13.5 | 15.0 | 6.4 | 6.2 | 61.6 | 60.3 | 24.9 | 23.8 | -240 | -145 | 32.2 | 32.1 | 5.84 | 7.28 | |
S11 | 7.4 | 6.5 | 6.8 | 7.0 | 66.0 | 67.1 | 27.6 | 29.7 | -195 | -170 | 30.4 | 26.7 | 5.70 | 8.07 | |
S12 | 8.4 | 6.3 | 6.7 | 6.4 | 63.8 | 67.5 | 27.4 | 23.4 | -190 | -131 | 31.5 | 26.9 | 6.80 | 7.45 | |
平均 | 8.1±3.2 | 6.7±0.5 | 60.2±6.7 | 28.7±4.6 | -165±29 | 27.3±5.3 | 6.86±1.23 | ||||||||
口外区 | S13 | 23.0 | 30.0 | 5.8 | 5.5 | 45.7 | 41.5 | 24.0 | 22.0 | -188 | -145 | 33.9 | 32.4 | 4.40 | 7.25 |
S14 | 27.0 | 24.6 | 6.9 | 7.0 | 68.2 | 67.7 | 27.4 | 27.6 | -130 | -172 | 34.0 | 32.3 | 5.50 | 7.30 | |
S15 | 29.4 | 23.5 | 6.3 | 5.9 | 59.7 | 54.2 | 23.6 | 22.5 | -121 | -125 | 34.0 | 32.2 | 5.60 | 7.24 | |
S16 | 29.6 | 29.0 | 5.9 | 4.9 | 55.7 | 37.4 | 23.0 | 17.0 | -177 | -132 | 33.9 | 32.4 | 5.70 | 7.06 | |
S17 | 32.5 | 33.0 | 5.1 | 5.6 | 39.3 | 46.3 | 18.2 | 22.0 | -134 | -119 | 34.0 | 33.4 | 5.80 | 6.90 | |
S18 | 38.0 | 40.0 | 6.7 | 7.0 | 68.1 | 69.4 | 25.2 | 28.4 | -144 | -107 | 34.3 | 33.4 | 5.60 | 6.90 | |
S19 | 41.8 | 41.0 | 6.2 | 5.8 | 58.7 | 56.5 | 22.9 | 20.9 | -116 | -121 | 34.4 | 33.6 | 5.98 | 6.76 | |
S20 | 37.0 | 33.0 | 5.4 | 4.5 | 50.1 | 35.5 | 21.0 | 15.2 | -180 | -179 | 34.4 | 33.9 | 6.22 | 6.77 | |
平均 | 32.1±6.1 | 5.9±0.7 | 53.4±11.6 | 22.6±8.7 | -143±27 | 33.5±0.8 | 5.86±0.84 |
表3
珠江口沉积物可溶性有机质荧光强度和荧光参数"
季节 | 口内区 | 混合区 | 口外区 | ||
---|---|---|---|---|---|
荧光强度 | 夏季 | A峰 | 135.9±35.6a | 98.3±14.8b | 73.7±17.7c |
C峰 | 139.9±21.9a | 86.3±12.4b | 68.9±16.2c | ||
M峰 | 234.7±25.7a | 152.9±21.5b | 128.6±26.9b | ||
B峰 | 14.1±2.6 | 11.7±1.8 | 12.2±2.8 | ||
T峰 | 49.2±4.7a | 37.5±3.3b | 34.5±8.4b | ||
冬季 | A峰 | 113.2±20.5a | 80.0±19.7b | 64.3±26.4b | |
C峰 | 90.2±15.9a | 60.0±16.7b | 50.6±21.2b | ||
M峰 | 155.8±15.3a | 104.5±27.9b | 94.0±35.8b | ||
B峰 | 25.6±14.1 | 21.4±8.9 | 14.6±4.0 | ||
T峰 | 49.3±14.6 | 39.9±7.6 | 37.5±11.1 | ||
荧光参数 | 夏季 | FI | 2.14±0.07a | 2.24±0.07b | 2.40±0.07c |
β:α | 0.79±0.02a | 0.87±0.04b | 1.15±0.04c | ||
BIX | 0.84±0.11a | 0.94±0.05b | 1.29±0.05c | ||
HIX | 0.66±0.05a | 0.62±0.03ab | 0.58±0.07b | ||
冬季 | FI | 2.22±0.08a | 2.30±0.10ab | 2.39±0.08b | |
β:α | 0.86±0.05a | 0.87±0.06a | 1.03±0.10b | ||
BIX | 0.93±0.07a | 0.94±0.07a | 1.13±0.11b | ||
HIX | 0.60±0.07 | 0.54±0.05 | 0.52±0.06 |
表4
珠江口沉积物Fe3+、可溶性有机质荧光强度和TOC相关性"
季节 | Fe3+ | A峰 | C峰 | M峰 | B峰 | T峰 | TOC | |
---|---|---|---|---|---|---|---|---|
夏季 | Fe3+ | 1 | ||||||
A峰 | -0.505* | 1 | ||||||
C峰 | -0.471* | -0.987** | 1 | |||||
M峰 | -0.460* | 0.973** | 0.996** | 1 | ||||
B峰 | -0.012 | 0.119 | 0.142 | 0.147 | 1 | |||
T峰 | -0.361 | 0.831** | 0.850** | 0.864** | 0.459* | 1 | ||
TOC | -0.224 | 0.701** | 0.687** | 0.685** | 0.128 | 0.627** | 1 | |
冬季 | Fe3+ | 1 | ||||||
A峰 | -0.475* | 1 | ||||||
C峰 | -0.489* | 0.986** | 1 | |||||
M峰 | -0.431 | 0.970** | 0.974** | 1 | ||||
B峰 | -0.593** | 0.400 | 0.427 | 0.465* | 1 | |||
T峰 | -0.578** | 0.715** | 0.720** | 0.760** | 0.743** | 1 | ||
TOC | -0.734** | 0.616** | 0.602** | 0.539* | 0.450* | 0.505* | 1 |
[1] | 程远月, 郭卫东, 夏恩琴, 等, 2008. 厦门湾沉积物间隙水中CDOM的荧光特性及其分布研究[J]. 台湾海峡, 27(1): 8-14. |
CHENG YUANYUE, GUO WEIDONG, XIA ENQIN, et al, 2008. Fluorescence characteristics of chromophoric dissolved organic matter and its distribution in sediment pore waters from Xiamen Bay[J]. Journal of Oceanography in Taiwan Strait, 27(1): 8-14. (in Chinese with English abstract) | |
[2] | 郭卫东, 王超, 徐静, 等, 2018. 海洋有机质的光谱分析方法评述[J]. 海洋通报, 37(6): 601-614. |
GUO WEIDONG, WANG CHAO, XU JING, et al, 2018. A review on the spectral analysis of marine organic matter[J]. Marine Science Bulletin, 37(6): 601-614. (in Chinese with English abstract) | |
[3] | 郭卫东, 王超, 李炎, 等, 2020. 水环境中溶解有机质的光谱表征: 从流域到深海[J]. 地球科学进展, 35(9): 933-947. |
GUO WEIDONG, WANG CHAO, LI YAN, et al, 2020. Characterization of aquatic dissolved organic matter by spectral analysis: from watershed to deep ocean[J]. Advances in Earth Science, 35(9): 933-947. (in Chinese with English abstract) | |
[4] | 韩永强, 夏嘉, 谭靖千, 等, 2020. 环雷州半岛近海表层沉积物有机碳分布及其控制因素分析[J]. 海洋科学, 44(3): 93-103. |
HAN YONGQIANG, XIA JIA, TAN JINGQIAN, et al, 2020. Distribution and controlling factors of organic carbon in surface sediments of the coastal region surrounding Leizhou Peninsula[J]. Marine Science, 44(3): 93-103. (in Chinese with English abstract) | |
[5] |
贾淇文, 章桂芳, 唐世林, 等, 2021. 2013-2018年珠江河口伶仃洋水域悬浮泥沙季节性变化分析[J]. 中山大学学报(自然科学版), 60(5): 59-71.
doi: 10.13471/j.cnki.acta.snus.2020D001 |
JIA QIWEN, ZHANG GUIFANG, TANG SHILIN, et al, 2021. Seasonal variation of suspended sediments in the Lingdingyang waters of the Pearl River Estuary from 2013 to 2018[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 60(5): 59-71, doi: 10.13471/j.cnki.acta.snus.2020D001. (in Chinese with English abstract)
doi: 10.13471/j.cnki.acta.snus.2020D001 |
|
[6] | 江四义, 郑兆勇, 2008. 从珠江口沉积物粒度参数特征分析泥沙来源及其运移趋势[J]. 中山大学学报(自然科学版), 47(S1): 126-129. |
JIANG SIYI, ZHENG ZHAOYONG, 2008. Sediment sources and transport tendency based on grain-size parameters in estuary of the Pearl River[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 47(S1): 126-129. (in Chinese with English abstract) | |
[7] | 连忠廉, 江志坚, 黄小平, 等, 2019. 珠江口表层沉积物有机碳不同浸提组分的空间分布特征[J]. 海洋环境科学, 38(3): 391-398. |
LIAN ZHONGLIAN, JIANG ZHIJIAN, HUANG XIAOPING, et al, 2019. Distribution of labile organic carbon using different extract method in the surface sediments of Pearl River Estuary[J]. Marine Environmental Science, 38(3): 391-398. (in Chinese with English abstract) | |
[8] | 刘广州, 胡嘉镗, 李适宇, 2020. 珠江口夏季海陆源有机碳的模拟研究--分布特征、贡献比重及其迁移转化过程[J]. 中国环境科学, 40(1): 162-173. |
LIU GUANGZHOU, HU JIATANG, LI SHIYU, 2020. Simulation of marine and terrestrial organic carbon in the Pearl River Estuary in summer--distribution characteristics, contribution rate and migration and transformation processes[J]. China Environmental Science, 40(1): 162-173. (in Chinese with English abstract) | |
[9] | 唐诚, 赵艳, 张华, 等, 2013. 珠江口近30年海底表层沉积物粒度分布及其环境变化[J]. 海洋科学, 37(5): 61-70. |
TANG CHENG, ZHAO YAN, ZHANG HUA, et al, 2013. The changes of sea surface grain size distribution and its sedimentary environment during the last 30 years in the Zhujiang River Estuary[J]. Marine Sciences, 37(5): 61-70. (in Chinese with English abstract) | |
[10] | 陶婧, 马伟伟, 李文君, 等, 2017. 南黄海沉积物中活性铁氧化物对有机碳的保存作用[J]. 海洋学报, 39(8): 16-24. |
TAO JING, MA WEIWEI, LI WENJUN, et al, 2017. Organic carbon preservation by reactive iron oxides in South Yellow Sea sediments[J]. Haiyang Xuebao, 39(8): 16-24. (in Chinese with English abstract) | |
[11] | 王华新, 线薇微, 2011. 长江口表层沉积物有机碳分布及其影响因素[J]. 海洋科学, 35(5): 24-31. |
WANG HUAXIN, XIAN WEIWEI, 2011. Distribution of the total organic carbon of surface sediment and its influence factors in the Yangtze River Estuary[J]. Marine Sciences, 35(5): 24-31. (in Chinese with English abstract) | |
[12] | 韦海伦, 蔡进功, 王国力, 等, 2018. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 33(10): 1024-1033. |
WEI HAILUN, CAI JINGONG, WANG GUOLI, et al, 2018. The diversity of organic matter in marine sediments and the suspiciousness of source parameters: a review[J]. Advances in Earth Science, 33(10): 1024-1033. (in Chinese with English abstract) | |
[13] | 吴金浩, 刘桂英, 王年斌, 等, 2012. 辽东湾北部海域表层沉积物氧化还原电位及其主要影响因素[J]. 沉积学报, 30(2): 333-339. |
WU JINHAO, LIU GUIYING, WANG NIANBIN, et al, 2012. The Eh in surface sediments in the Northern of Liaodong Bay and its main influencing factors[J]. Acta Sedimentologica Sinica, 30(2): 333-339. (in Chinese with English abstract) | |
[14] |
徐阳, 李朋辉, 张传伦, 等, 2021. 珠江口沉积物溶解性有机质来源及光谱特征的空间变化[J]. 中国科学 D辑: 地球科学, 51(1): 63-72.
doi: 10.1007/s11430-020-9671-9 |
XU YANG, LI PENGHUI, ZHANG CHUANLUN, et al, 2021. Spectral characteristics of dissolved organic matter in sediment pore water from Pearl River Estuary[J]. Science China: Earth Sciences, 64(1): 52-61.
doi: 10.1007/s11430-020-9671-9 |
|
[15] | 张凌, 陈繁荣, 殷克东, 等, 2010. 珠江口及近海表层沉积有机质的特征和来源[J]. 热带海洋学报, 29(1): 98-103. |
ZHANG LING, CHEN FANRONG, YIN KEDONG, et al, 2010. The characteristics and sources of surface sediments in the Pearl River Estuary and its adjacent shelves[J]. Journal of Tropical Oceanography, 29(1): 98-103. (in Chinese with English abstract) | |
[16] |
BARRAL M T, ARIAS M, GUÉRIF J, 1998. Effects of iron and organic matter on the porosity and structural stability of soil aggregates[J]. Soil and Tillage Research, 46(3-4): 261-272.
doi: 10.1016/S0167-1987(98)00092-0 |
[17] | BAUER J E, BIANCHI T S, 2011. Dissolved organic carbon cycling and transformation[J]. Treatise on Estuarine and Coastal Science, 5: 7-67. |
[18] |
BLAIR N E, ALLER R C, 2012. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 4: 401-423.
doi: 10.1146/annurev-marine-120709-142717 |
[19] |
CHEN CHUNMEI, HALL S J, COWARD E, et al, 2020. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications, 11(1): 2255.
doi: 10.1038/s41467-020-16071-5 |
[20] |
CHEN MEILIAN, KIM S H, JUNG H J, et al, 2017. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: production, benthic flux, and environmental implications[J]. Water Research, 121: 150-161.
doi: 10.1016/j.watres.2017.05.022 |
[21] |
COBLE P G, 2007. Marine optical biogeochemistry: the chemistry of ocean color[J]. Chemical Reviews, 107(2): 402-418.
doi: 10.1021/cr050350+ |
[22] |
GAO XUELU, YANG YUWEI, WANG CHUANYUAN, 2012. Geochemistry of organic carbon and nitrogen in surface sediments of coastal Bohai Bay inferred from their ratios and stable isotopic signatures[J]. Marine Pollution Bulletin, 64(6): 1148-1155.
doi: 10.1016/j.marpolbul.2012.03.028 |
[23] |
GIREESHKUMAR T R, DEEPULAL P M, CHANDRAM OHANAKUMAR N, 2013. Distribution and sources of sedimentary organic matter in a tropical estuary, south west coast of India (Cochin estuary): a baseline study[J]. Marine Pollution Bulletin, 66(1-2): 239-245.
doi: 10.1016/j.marpolbul.2012.10.002 |
[24] |
GU YANGGUANG, OUYANG JUN, NING JIAJIA, et al, 2017. Distribution and sources of organic carbon, nitrogen and their isotopes in surface sediments from the largest mariculture zone of the eastern Guangdong coast, South China[J]. Marine Pollution Bulletin, 120(1-2): 286-291.
doi: 10.1016/j.marpolbul.2017.05.013 |
[25] |
HAN LULU, WANG YINGHUI, XU YUNPING, et al, 2021. Water- and base-extractable organic matter in sediments from lower Yangtze River-Estuary-East China sea continuum: insight into accumulation of organic carbon in the river-dominated margin[J]. Frontiers in Marine Science, 8: 617241.
doi: 10.3389/fmars.2021.617241 |
[26] |
HE WEI, JUNG H, LEE J H, et al, 2016. Differences in spectroscopic characteristics between dissolved and particulate organic matters in sediments: insight into distribution behavior of sediment organic matter[J]. Science of the Total Environment, 547: 1-8.
doi: 10.1016/j.scitotenv.2015.12.146 |
[27] |
HEDGES J I, KEIL R G, 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 49(2-3): 81-115.
doi: 10.1016/0304-4203(95)00008-F |
[28] |
HELMS J R, STUBBINS A, RITCHIE J D, et al, 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 53(3): 955-969.
doi: 10.4319/lo.2008.53.3.0955 |
[29] |
HOU PENGFEI, EGLINTON T I, YU MENG, et al, 2021. Degradation and aging of terrestrial organic carbon within estuaries: biogeochemical and environmental implications[J]. Environmental Science & Technology, 55(15): 10852-10861.
doi: 10.1021/acs.est.1c02742 |
[30] |
HU JIANFANG, PENG PING'AN, JIA GUODONG, et al, 2006. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River Estuary and adjacent shelf, Southern China[J]. Marine Chemistry, 98(2-4): 274-285.
doi: 10.1016/j.marchem.2005.03.008 |
[31] | HUTCHINGS J A, BIANCHI T S, NAJJAR R G, et al, 2020. Carbon deposition and burial in estuarine sediments of the contiguous United States[J]. Global Biogeochemical Cycles, 34(2): e2019GB006376. |
[32] |
LAI ZHIGANG, MA RONGHUA, GAO GUANGYIN, et al, 2015. Impact of multichannel river network on the plume dynamics in the Pearl River Estuary[J]. Journal of Geophysical Research: Oceans, 120(8): 5766-5789.
doi: 10.1002/2014JC010490 |
[33] |
LALONDE K, MUCCI A, OUELLET A, et al, 2012. Preservation of organic matter in sediments promoted by iron[J]. Nature, 483(7388): 198-200.
doi: 10.1038/nature10855 |
[34] |
LI MAOMAO, KONG FANLONG, LI YUE, et al, 2020. Ecological indication based on source, content, and structure characteristics of dissolved organic matter in surface sediment from Dagu River estuary, China[J]. Environmental Science and Pollution Research, 27(36): 45499-45512.
doi: 10.1007/s11356-020-10456-1 |
[35] |
LIAN ZHONGLIAN, JIANG ZHIJIAN, HUANG XIAOPING, et al, 2018. Labile and recalcitrant sediment organic carbon pools in the Pearl River Estuary, southern China[J]. Science of the Total Environment, 640-641: 1302-1311.
doi: 10.1016/j.scitotenv.2018.05.389 |
[36] |
LINKHORST A, DITTMAR T, WASKA H, 2017. Molecular fractionation of dissolved organic matter in a shallow subterranean estuary: the role of the iron curtain[J]. Environmental Science & Technology, 51(3): 1312-1320.
doi: 10.1021/acs.est.6b03608 |
[37] |
MOYER R P, BAUER J E, GROTTOLI A G, 2013. Carbon isotope biogeochemistry of tropical small mountainous river, estuarine, and coastal systems of Puerto Rico[J]. Biogeochemistry, 112(1-3): 589-612.
doi: 10.1007/s10533-012-9751-y |
[38] |
MURPHY K R, BUTLER K D, SPENCER R G M, et al, 2010. Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison[J]. Environmental Science & Technology, 44(24): 9405-9412.
doi: 10.1021/es102362t |
[39] |
OGAWA Y, OKAMOTO Y, SADABA R B, et al, 2021. Sediment organic matter source estimation and ecological classification in the semi-enclosed Batan Bay Estuary, Philippines[J]. International Journal of Sediment Research, 36(1): 110-119.
doi: 10.1016/j.ijsrc.2020.05.007 |
[40] |
PENG XIANZHI, XIONG SONGSONG, OU WEIHUI, et al, 2017. Persistence, temporal and spatial profiles of ultraviolet absorbents and phenolic personal care products in riverine and estuarine sediment of the Pearl River catchment, China[J]. Journal of Hazardous Materials, 323: 139-146.
doi: 10.1016/j.jhazmat.2016.05.020 |
[41] |
RAYMOND P A, BAUER J E, 2001. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis[J]. Organic Geochemistry, 32(4): 469-485.
doi: 10.1016/S0146-6380(00)00190-X |
[42] | RIEDEL T, ZAK D, BIESTER H, et al, 2013. Iron traps terrestrially derived dissolved organic matter at redox interfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(25): 10101-10105. |
[43] |
SHIELDS M R, BIANCHI T S, GÉLINAS Y, et al, 2016. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments[J]. Geophysical Research Letters, 43(3): 1149-1157.
doi: 10.1002/2015GL067388 |
[44] |
WANG JINPENG, YAO PENG, BIANCHI T S, et al, 2015. The effect of particle density on the sources, distribution, and degradation of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf[J]. Chemical Geology, 402: 52-67.
doi: 10.1016/j.chemgeo.2015.02.040 |
[45] |
WANG QIONGQIONG, HE XIAO, HUANG X H H, et al, 2017. Impact of secondary organic aerosol tracers on tracer-based source apportionment of organic carbon and PM2.5: a case study in the Pearl River Delta, China[J]. ACS Earth and Space Chemistry, 1(9): 562-571.
doi: 10.1021/acsearthspacechem.7b00088 |
[46] |
WU XIAODAN, WU BIN, JIANG MINGYU, et al, 2020. Distribution, sources and burial flux of sedimentary organic matter in the East China Sea[J]. Journal of Oceanology and Limnology, 38(5): 1488-1501.
doi: 10.1007/s00343-020-0037-2 |
[47] |
YAO PENG, YU ZHIGANG, BIANCHI T S, et al, 2015. A multiproxy analysis of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf[J]. Journal of Geophysical Research: Biogeosciences, 120(7): 1407-1429.
doi: 10.1002/2014JG002831 |
[48] |
YIN GUOYU, HOU LIJUN, LIU MIN, et al, 2017. DNRA in intertidal sediments of the Yangtze Estuary[J]. Journal of Geophysical Research: Biogeosciences, 122(8): 1988-1998.
doi: 10.1002/2017JG003766 |
[49] |
ZENG QIANG, HUANG LIUQIN, MA JINGYU, et al, 2020. Bio-reduction of ferrihydrite-montmorillonite-organic matter complexes: effect of montmorillonite and fate of organic matter[J]. Geochimica et Cosmochimica Acta, 276: 327-344.
doi: 10.1016/j.gca.2020.03.011 |
[50] |
ZHANG LING, YIN KEDONG, WANG LU, et al, 2009. The sources and accumulation rate of sedimentary organic matter in the Pearl River Estuary and adjacent coastal area, Southern China[J]. Estuarine, Coastal and Shelf Science, 85(2): 190-196.
doi: 10.1016/j.ecss.2009.07.035 |
[51] |
ZHANG SHANSHAN, LIANG CUI, XIAN WEIWEI, 2020. Spatial and temporal distributions of terrestrial and marine organic matter in the surface sediments of the Yangtze River estuary[J]. Continental Shelf Research, 203: 104158.
doi: 10.1016/j.csr.2020.104158 |
[52] |
ZHAO BIN, YAO PENG, BIANCHI T S, et al, 2018. The role of reactive iron in the preservation of terrestrial organic carbon in estuarine sediments[J]. Journal of Geophysical Research: Biogeosciences, 123(12): 3556-3569.
doi: 10.1029/2018JG004649 |
[53] | ZHAO BIN, YAO PENG, BIANCHI T S, et al, 2021. Controls on organic carbon burial in the Eastern China marginal seas: a regional synthesis[J]. Global Biogeochemical Cycles, 35(4): e2020GB006608. |
[54] |
ZHOU YUPING, HE DING, HE CHEN, et al, 2021. Spatial changes in molecular composition of dissolved organic matter in the Yangtze River Estuary: implications for the seaward transport of estuarine DOM[J]. Science of the Total Environment, 759: 143531.
doi: 10.1016/j.scitotenv.2020.143531 |
[1] | 宋星宇, 林雅君, 张良奎, 向晨晖, 黄亚东, 郑传阳. 粤港澳大湾区近海中小型浮游动物分布特征及影响因素*[J]. 热带海洋学报, 2023, 42(3): 136-148. |
[2] | 赵中贤, 孙珍, 毛云华, 张伙带. 南海北部陆缘不均匀伸展及脉动式构造升降史*[J]. 热带海洋学报, 2023, 42(3): 96-115. |
[3] | 高娜, 赵明利, 马毅, 徐婉明, 詹海刚, 蔡树群. 台风对珠江口风暴增水的影响分析[J]. 热带海洋学报, 2023, 42(1): 32-42. |
[4] | 唐灵, 聂宇华, 王平, 汤超莲. 1974—2020年珠江口外海海洋热浪变化趋势分析[J]. 热带海洋学报, 2022, 41(6): 143-150. |
[5] | 尹天齐, 王庆, 杨宇峰, 岑竞仪. 基于形态学和DNA分子鉴定的珠江口浮游动物群落结构比较研究[J]. 热带海洋学报, 2022, 41(3): 172-185. |
[6] | 陈琼, 唐世林, 吴颉. 基于GF-4卫星反演的珠江口水体表层悬浮泥沙时空变化特征*[J]. 热带海洋学报, 2022, 41(2): 65-76. |
[7] | 帅义萍, 陈寅超, 刘子嘉, 葛在名, 马梦真, 张苑芳, 李芊. 2016年春季季风转换期的珠江冲淡水分布与生态特征分析*[J]. 热带海洋学报, 2021, 40(5): 63-71. |
[8] | 蔡建楠, 刘海龙, 姜波, 陈吟晖, 李杰鸿, 吴思晓, 梁建霞, 黄华, 邢前国. 珠江口河网水体非光学活性水质参数高光谱反演[J]. 热带海洋学报, 2021, 40(1): 58-64. |
[9] | 苏芯莹, 钟瑜, 李尧, 谭美婷, 黄亚东, 刘珊, 徐向荣, 宋星宇. 珠江口典型海岛周边水域浮游植物分布特征及其影响因素*[J]. 热带海洋学报, 2020, 39(5): 30-42. |
[10] | 杨碧峰, 熊成, 曹敬贺, 孙金龙, 万奎元, 夏少红. 滑行波震相对珠江口地区壳内低速层的约束作用[J]. 热带海洋学报, 2020, 39(1): 106-119. |
[11] | 严冬, 宋德海, 鲍献文. 珠江口洪季最大浑浊带的大小潮变化与机制分析*[J]. 热带海洋学报, 2020, 39(1): 20-35. |
[12] | 欧素英. 华南不同类型热带风暴驱动下珠江口表层悬沙分布趋势[J]. 热带海洋学报, 2019, 38(3): 22-31. |
[13] | 徐闯,许永基,胡嘉镗,李适宇,刘晋涛. 基于高精度海洋动力模型的珠江口羽状流季节和年际变化规律研究[J]. 热带海洋学报, 2019, 38(3): 43-52. |
[14] | 曹文熙, 孙兆华, 李彩, 邹国旺. 水质监测浮标数据采集和接收系统设计及其应用[J]. 热带海洋学报, 2018, 37(5): 1-6. |
[15] | 曹文熙, 孙兆华, 李彩, 邹国旺. 水质监测浮标及其传感器的防污染措施[J]. 热带海洋学报, 2018, 37(5): 7-12. |
|