中建南盆地北部海底麻坑地貌特征及成因机制
汪灵(1996—), 女, 江西省井冈山市人, 硕士研究生, 主要从事海底地貌与海洋地球物理方面的研究。email: |
Copy editor: 殷波
收稿日期: 2020-09-22
要求修回日期: 2020-12-09
网络出版日期: 2021-01-13
基金资助
广东省实验室(广州)人才团队引进重大专项(GML2019ZD0104)
国家科技基础资源调查专项(2017FY201406)
广东省“珠江人才计划”高层次人才认定项目(2017GC010510)
版权
Morphology characteristics and formation mechanisms of submarine pockmarks in the northern Zhongjiannan Basin, South China Sea
Copy editor: YIN Bo
Received date: 2020-09-22
Request revised date: 2020-12-09
Online published: 2021-01-13
Supported by
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(GML2019ZD0104)
Special Foundation for National Science and Technology Basic Research Program of China(2017FY201406)
Guangdong Pearl River Talents Program(2017GC010510)
Copyright
海底麻坑是与流体逸散相关的一种海底凹陷地貌, 在全球海域的陆架、陆坡和深海平原等均有广泛发育。文章利用高分辨率的多波束测深数据和三维地震资料, 在中建南盆地北部识别出330个规模不等的海底麻坑, 按照麻坑形态可将其分为: 圆形、椭圆形、长条形及新月形麻坑。研究区内海底麻坑直径可达1500~7900m, 最大深度可达175m, 其中圆形麻坑规模(直径、深度)小于椭圆形、长条形和新月形麻坑, 表明圆形麻坑处于麻坑发育早期阶段。三维地震资料显示不同类型海底麻坑的下伏地层中均发育有断层、气烟囱、裂隙等流体逸散通道, 为该区域海底麻坑形成提供了有利条件。在海底麻坑演化过程中, 底流对海底麻坑的地貌形态具有改造作用。当圆形麻坑下伏地层流体活动强烈时, 流体可沿着运移通道直接向麻坑内壁渗漏, 使得其内壁塌陷, 逐渐演化成椭圆形麻坑。由于椭圆形麻坑处于底流活动影响的早期阶段, 其受底流改造作用较弱。在持续性底流活动的强烈改造作用下, 紧密排列的圆形或椭圆形麻坑逐渐拉伸演变成长条形麻坑。当底流作用于孤立的圆形麻坑时, 在底流的上游侧沉积速率增加, 麻坑在上游侧接受沉积被掩埋, 下游侧地层被侵蚀, 从而形成新月形麻坑。根据研究区海底麻坑成因机制分析, 文章首次提出了一种展示中建南盆地不同类型海底麻坑演化过程模型, 该模型有助于理解中建南盆地流体逸散过程和底流活动, 并且可为其他区域海底麻坑演化过程研究提供参考。
汪灵 , 王彬 , 李健 , 喻凯琦 , 赵芳 . 中建南盆地北部海底麻坑地貌特征及成因机制[J]. 热带海洋学报, 2021 , 40(5) : 72 -84 . DOI: 10.11978/2020111
Submarine pockmarks are defined as submarine depressions associated with fluid escape, which are distributed widely in the continental shelf, slope and plain of global oceans. By using multibeam bathymetric maps and three-dimensional seismic profiles, we identified 330 pockmarks with different scales in the northern part of the Zhongjiannan Basin in the South China Sea. Depending on the plan views, these pockmarks are divided into four types: circular, elliptical, elongated, and crescent pockmarks. The pockmarks in the study area have diameters ranging from 1500 to 7900 m, with a maximum depth of 175 m. The scale of circular pockmarks is smaller than those of the other three types in this area, indicating that circular pockmarks are in the early stage of submarine pockmarks. The 3D seismic profiles show that fluid escape pathways, such as faults, gas chimneys and fractures, develop in their overlying strata, which provide a favorable condition for these pockmarks. Bottom currents have an effect on shaping the morphology of pockmarks in our study area. When the flowing fluids are powerful in the underlying strata, the flanks of circular pockmarks would collapse where the flowing fluids supply to the flanks along migration pathways directly. Because bottom currents affect elliptical pockmarks at their early stage, elliptical pockmarks would not show any obvious modification. Additionally, the closely arrayed circular or elliptical pockmarks would gradually evolve into elongated pockmarks due to the strong effect of consistent bottom currents. The upstream sides of isolated circular pockmarks are buried due to the increment of sedimentation rate and the downstream sides of these pockmarks are eroded, which leads to the formation of crescent pockmarks. By analyzing the formation mechanisms of pockmarks, we propose a model to exhibit the evolutions of different types of pockmarks in the northern part of the Zhongjiannan Basin. This model helps us better understand the process of fluid escape and bottom current flows and provides a reference for other areas of the formation of pockmarks.
图2 研究区海底麻坑分布等深线图图中红色线段代表地震测线位置, 红色方框代表麻坑链, 蓝色方框代表复合麻坑 Fig. 2 Isobath map of submarine pockmark distribution in the study area. The red lines represent the location of seismic profiles, the red box represents the pockmark train, and the small blue box represents the composite pockmarks |
[1] |
陈端新, 吴时国, 王志君, 等, 2012. 南海北部陆缘深水盆地多边形断层几何特征及成因[J]. 石油学报, 33(4):610-616.
|
[2] |
陈玲, 2006. 南海中建南盆地构造样式分析[J]. 海洋地质与第四纪地质, 26(1):53-58.
|
[3] |
邸鹏飞, 黄华谷, 黄保家, 等, 2012. 莺歌海盆地海底麻坑的形成与泥底辟发育和流体活动的关系[J]. 热带海洋学报, 31(5):26-36.
|
[4] |
高红芳, 白志琳, 郭依群, 2000. 南海西部中建南盆地新生代沉积相及古地理演化[J]. 中国海上油气(地质), 14(6):411-416.
|
[5] |
高红芳, 王衍棠, 郭丽华, 2007. 南海西部中建南盆地油气地质条件和勘探前景分析[J]. 中国地质, 34(4):592-598.
|
[6] |
何家雄, 夏斌, 张树林, 等, 2006. 莺歌海盆地泥底辟成因、展布特征及其与天然气运聚成藏关系[J]. 中国地质, 33(6):1336-1344.
|
[7] |
何丽娟, 熊亮萍, 汪集旸, 1998. 南海盆地地热特征[J]. 中国海上油气(地质), 12(2):87-90.
|
[8] |
李家彪, 2005. 中国边缘海形成演化与资源效应[M]. 北京: 海洋出版社: 1-505.
|
[9] |
李家彪, 丁巍伟, 高金耀, 等, 2011. 南海新生代海底扩张的构造演化模式: 来自高分辨率地球物理数据的新认识[J]. 地球物理学报, 54(12):3004-3015.
|
[10] |
梁全胜, 刘震, 王德杰, 等, 2006. “气烟囱”与油气勘探[J]. 新疆石油地质, 27(3):288-290.
|
[11] |
刘金萍, 简晓玲, 王后金, 等, 2020. 南海西部中建南盆地烃源岩热演化史[J]. 地质学刊, 44(1):157-162.
|
[12] |
罗敏, 吴庐山, 陈多福, 2012. 海底麻坑研究现状及进展[J]. 海洋地质前沿, 28(5):33-42.
|
[13] |
孙启良, 2011. 南海北部深水盆地流体逸散系统与沉积物变形[D]. 北京: 中国科学院研究生院(海洋研究所).
|
[14] |
吴时国, 孙启良, 董冬冬, 2008. 深水盆地中多边形断层的几何特征与形成机制探讨[J]. 地质力学学报, 14(3):231-240.
|
[15] |
夏少红, 范朝焰, 孙金龙, 等, 2017. 南海北部晚新生代岩浆活动的发育特征与构造意义[J]. 海洋地质与第四纪地质, 37(6):25-33.
|
[16] |
徐行, 罗贤虎, 许鹤华, 等, 2015. 南海地热流探测、研究与展望[J]. 南海地质研究, (1):1-18.
|
[17] |
杨涛涛, 吕福亮, 王彬, 等, 2013. 琼东南盆地南部深水区气烟囱地球物理特征及成因分析[J]. 地球物理学进展, 28(5):2634-2641.
|
[18] |
杨志力, 王彬, 李丽, 等. 南海中建海域麻坑发育特征及成因机制[J]. 海洋地质前沿, 2020(1):42-49.
|
[19] |
姚伯初, 万玲, 刘振湖, 2004. 南海海域新生代沉积盆地构造演化的动力学特征及其油气资源[J]. 地球科学-中国地质大学学报, 29(5):543-549.
|
[20] |
姚伯初, 万玲, 吴能友, 2005. 南海新生代构造演化及岩石圈三维结构特征[J]. 地质通报, 24(1):1-8.
|
[21] |
张功成, 谢晓军, 王万银, 等, 2013. 中国南海含油气盆地构造类型及勘探潜力[J]. 石油学报, 34(4):611-627.
|
[22] |
张伟, 梁金强, 何家雄, 等, 2017. 南海北部陆坡泥底辟/气烟囱基本特征及其与油气和水合物成藏关系[J]. 海洋地质前沿, 33(7):11-23.
|
[23] |
钟广见, 高红芳, 2005. 中建南盆地新生代层序地层特征[J]. 大地构造与成矿学, 29(3):403-409.
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
/
〈 |
|
〉 |